Time-resolved surface enhanced infrared absorption (SEIRA) spectroscopy is employed to analyse the dynamics of the protein structural changes coupled to the electron transfer process of immobilised cytochrome c (Cyt-c). Upon electrostatic binding of Cyt-c to Au electrodes coated with self-assembled monolayers (SAMs) of carboxyl-terminated thiols, cyclic voltammetric measurements demonstrate a reversible redox process with a redox potential that is similar to that of Cyt-c in solution, and a non-exponential distance-dependence of the electron transfer rate as observed previously (D. H. Murgida and P. Hildebrandt, Chem. Soc. Rev. 2008, 37, 937). On the basis of characteristic redox-state-sensitive amide I bands, the protein structural changes triggered by the electron transfer are monitored by rapid scan and step scan SEIRA spectroscopy in combination with the potential jump technique. Whereas the temporal evolution of the conjugate bands at 1693 and 1673 cm(-1) displays the same rate constants as electron transfer, the time-dependent changes of the 1660-cm(-1) band are slower by about a factor of 2. The study demonstrates that time-resolved SEIRA spectroscopy provides further information about the dynamics and mechanism of interfacial processes of redox proteins, thereby complementing the results obtained from other surface-sensitive techniques. In comparison with previous surface enhanced resonance Raman spectroscopic findings, the present results are discussed in terms of the local electric field strengths at the Au/SAM/Cyt-c interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b806528d | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFNanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.
View Article and Find Full Text PDFThe capsaicin receptor, TRPV1, mediates the detection of harmful chemical and thermal stimuli. Overactivation of TRPV1 can lead to cellular damage or death through excitotoxicity, a phenomenon associated with painful neuropathy and the paradoxical use of capsaicin as an analgesic. We exploited capsaicin-evoked death to conduct a systematic analysis of excitotoxicity through a genome-wide CRISPRi screen, thereby revealing a comprehensive network of regulatory pathways.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Medicine, University of Florida (UF) Health Cancer Center, University of Florida, Gainesville, FL, United States.
Mitochondria are essential double-membrane organelles with intricate structures and diverse functions within cells. Under normal physiological conditions, mitochondria regulate cellular metabolism and maintain energy homeostasis via the electron transport chain, mediate stem cell fate, and modulate reactive oxygen species production, playing a pivotal role in energy supply and lifespan extension. However, mitochondrial dysfunction can lead to various pathological changes, including cellular aging, necrosis, dysregulated tumor immunity, and the initiation and progression of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!