Overexpression of REIC/Dkk-3 (a tumor suppressor gene) induces cancer cell apoptosis through endoplasmic reticulum (ER) stress. Therefore, the identification of the portion of REIC/Dkk-3 that causes ER stress may be essential for the development of cancer treatment based on REIC/Dkk-3. Here, we made several truncated forms of REIC/Dkk-3 and investigated their therapeutic potentials against prostate cancer. Among three truncated forms, a variant comprising the N-terminal 78 amino acid region of REIC/Dkk-3 ((1-78)REIC/Dkk-3) most strongly induced ER stress and apoptosis in human prostate cancer cells (PC3). For in vivo gene expression, we coupled a biodegradable polymer with naked DNA, which attained robust trans-gene expression in PC3-derived subcutaneous tumor. In therapeutic experiments, we demonstrated that multiple direct injections of polymer-conjugated (1-78)REIC/Dkk-3 plasmid provoke ER stress and significantly reduced the subcutaneous tumor volume compared with the control group. We suggest this non-viral strategy may be an effective alternative to viral gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2008.08.079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!