The identification of metabolically active microbial key players is fundamental for understanding the structure and functions of contaminant-degrading communities. The metabolic activity can be analysed by feeding the microbial culture with stable-isotope-labelled substrates and subsequently tracing their incorporation into the biomass. In this paper we present a method which is able to detect the incorporation of stable isotopes from the substrate into the proteins of a benzene-metabolising microorganism. Pseudomonas putida strain ML2 was grown under aerobic conditions with the substrates (12)C-benzene, (13)C-benzene or (15)N-ammonium and (12)C-benzene. Proteins of these cultures were resolved by two-dimensional gel electrophoresis (2-DE) and corresponding protein spots were subjected to matrix-assisted laser ionization/desorption mass spectrometric (MALDI-MS) analysis. The proteins of the (12)C-sample were identified by peptide mass fingerprinting (PMF) as well as by tandem mass spectrometric (MS/MS) measurements. The (13)C- or (15)N-content of the peptides from the labelling experiments was determined by MALDI-MS/MS. The incorporation of heavy isotopes into the proteins from cultures grown on (13)C-benzene and (15)N-ammonium was determined based on the mass differences between labelled and non-labelled peptides as well as on the isotopic distribution of the y(1)-ion of arginine. The method we present here principally allows the unravelling of the carbon and nitrogen flow not only in pure cultures, but also in microbial communities consisting of many microbial species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.3684 | DOI Listing |
J Mol Model
January 2025
College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China.
Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.
Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.
View Article and Find Full Text PDFChem Sci
January 2025
Instituto de Carboquímica (ICB-CSIC) C/Miguel Luesma Castán 4 E-50018 Zaragoza Spain
Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.
View Article and Find Full Text PDFJ Plankton Res
July 2024
Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte .
View Article and Find Full Text PDFFront Microbiol
January 2025
Centre for Soil and Environmental Research, Lincoln University, Christchurch, New Zealand.
The contrasting response of AOA, AOB, and comammox transcript abundance to temperature, moisture, and nitrogen was investigated using soil microcosms. The moisture, temperature, and nitrogen treatments were selected to represent conditions typically found in a New Zealand (NZ) dairy farm. AOB dominated all synthetic urine treated soils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!