Theory-based research is needed to understand how people respond to environmental health risk information. Both the common sense model (CSM) of self-regulation and the mental models approach propose that information shapes individuals' personal understandings that, in turn, influence their decisions and actions. We compare these frameworks and explain how the CSM was applied to describe and measure mental representations of arsenic contaminated well water. Educational information, key informant interviews, and environmental risk literature were used to develop survey items to measure dimensions of cognitive representations (identity, cause, timeline, consequences, control) and emotional representations. Surveys mailed to 1,067 private well users with moderate and elevated arsenic levels yielded an 84 % response rate (n = 897). Exploratory and confirmatory factor analyses of data from the elevated arsenic group identified a factor structure that retained the CSM representational structure and was consistent across moderate and elevated arsenic groups. The CSM has utility for describing and measuring representations of environmental health risks, thus supporting its application to environmental health risk communication research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551671 | PMC |
http://dx.doi.org/10.1080/10810730802281627 | DOI Listing |
J Sports Med Phys Fitness
January 2025
Research Unit on Youth, Physical Activity, Sports and Health (J-AP2S), University of Toulon, Toulon, France.
Background: Understanding the dietary intake of elite adolescent athletes and its adequacy with sport nutrition recommendation is a key issue for health and player development, as well as performance and recovery. Energy availability needs to be considered to ensure optimal health and performance in young athletes. The present study aimed to quantify energy availability, energy expenditure and macronutrient intake in young male rugby union players competing at national level.
View Article and Find Full Text PDFSmall
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore.
High-quality draft genomes of six subspecies strains from Cambodian poultry marketplaces were sequenced. The strains were identified as Corvallis-, Monschaui-, and Kentucky-serovars. The fluoroquinolone resistance gene, was found in three strains in different Cambodian provinces.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China.
Unlabelled: Mercury pollution is a kind of heavy metal pollution with great harm and strong toxicity which exists worldwide. Some microorganisms can convert highly toxic methylmercury into inorganic mercury compounds with significantly reduced toxicity. This is an effective means of methylmercury pollution remediation.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Clinical Infection Department, Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom.
Unlabelled: Remote polar regions offer unique opportunities and significant challenges for antimicrobial resistance research in a near-pristine environment. While core microbiology techniques continue to have an important role in supporting environmental research, the severe cold climate presents considerable challenges to laboratory research. We explore adaptations required for core bacteriology investigations in polar regions on an unsupported remote expedition c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!