Analysis of manganese-regulated gene expression in the ligninolytic basidiomycete Ceriporiopsis subvermispora.

Curr Genet

Laboratorio de Bioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Vicuña Mackenna 20, Providencia, Santiago, Chile.

Published: October 2008

In this work, we explore the use of the unbiased cDNA-AFLP strategy to identify genes involved in Mn(2+) homeostasis in Ceriporiopsis subvermispora. In this ligninolytic white-rot fungus, whose genome has not yet been sequenced, three Mn peroxidase genes responding to Mn(2+) have been characterized. Using cDNA-AFLP to identify transcript-derived fragments (TDFs), a total of 37 differentially expressed cDNA fragments were identified by comparing band intensities among cDNA-AFLP patterns obtained from mycelia from cultures supplemented with different concentrations of Mn(2+). Of 21 differentially expressed TDFs, nine were classified as upregulated, five as downregulated and seven as unregulated. Of these, six upregulated and two downregulated TDFs were selected for further characterization. The expected TDFs for the known Mn peroxidases were not isolated, but several genes encoding proteins related to protein sorting, storage and excretion of excess Mn(2+) were identified. Transcripts induced under Mn(2+) supplementation exhibited homologies to the elongation factor eEF3, a HDEL sequence binding protein and the ARD1 subunit of the N-acetyltransferase complex, among others. Overall, the results obtained in this study suggest a complex picture of Mn(2+) homeostasis and provide the possibility to search for common regulatory elements in the promoters of the novel putatively identified genes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-008-0209-7DOI Listing

Publication Analysis

Top Keywords

ceriporiopsis subvermispora
8
mn2+ homeostasis
8
differentially expressed
8
upregulated downregulated
8
mn2+
6
analysis manganese-regulated
4
manganese-regulated gene
4
gene expression
4
expression ligninolytic
4
ligninolytic basidiomycete
4

Similar Publications

White rot fungi can degrade lignin and improve the nutritional value of highly lignified biomass for ruminants. We screened for excellent fungi-biomass combinations by investigating the improvement of digestibility of wheat straw, barley straw, oat straw, rapeseed straw, miscanthus, new reed, spent reed from thatched roofs, and cocoa shells after colonisation by Ceriporiopsis subvermispora (CS), Lentinula edodes (LE), and Pleurotus eryngii (PE) (indicated by increased in vitro gas production [IVGP]). First, growth was evaluated for three fungi on all types of biomass, over a period of 17 days in race tubes.

View Article and Find Full Text PDF

The aim of fungal treatment of organic matter for ruminants is the improvement of its degradability. So far, such treatment appears to be time-consuming and improvement has been modest. In previous work, we observed within three white rot species that there is modest () or low ( and ) variation in fiber degradation in wheat straw during seven weeks of incubation.

View Article and Find Full Text PDF

White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species.

View Article and Find Full Text PDF

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids.

View Article and Find Full Text PDF

Targeting deoxynivalenol for degradation by a chimeric manganese peroxidase/glutathione system.

Ecotoxicol Environ Saf

March 2024

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China. Electronic address:

The manganese peroxidase (MnP) can degrade multiple mycotoxins including deoxynivalenol (DON) efficiently; however, the lignin components abundant in foods and feeds were discovered to interfere with DON catalysis. Herein, using MnP from Ceriporiopsis subvermispora (CsMnP) as a model, it was demonstrated that desired catalysis of DON, but not futile reactions with lignin, in the reaction systems containing feeds could be achieved by engineering MnP and supplementing with a boosting reactant. Specifically, two successive strategies (including the fusion of CsMnP to a DON-recognizing ScFv and identification of glutathione as a specific targeting enhancer) were combined to overcome the lignin competition, which together resulted into elevation of the degradation rate from 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!