Disruption of the blood brain barrier (BBB) is a hallmark feature of immune-mediated neurological disorders as diverse as viral hemorrhagic fevers, cerebral malaria and acute hemorrhagic leukoencephalitis. Although current models hypothesize that immune cells promote vascular permeability in human disease, the role CD8 T cells play in BBB breakdown remains poorly defined. Our laboratory has developed a novel murine model of CD8 T cell mediated central nervous system (CNS) vascular permeability using a variation of the Theiler's virus model of multiple sclerosis. In previous studies, we observed that MHC class II(-/-) (CD4 T cell deficient), IFN-gammaR(-/-), TNF-alpha(-/-), TNFR1(-/-), TNFR2(-/-), and TNFR1/TNFR2 double knockout mice as well as those with inhibition of IL-1 and LTbeta activity were susceptible to CNS vascular permeability. Therefore, the objective of this study was to determine the extent immune effector proteins utilized by CD8 T cells, perforin and FasL, contributed to CNS vascular permeability. Using techniques such as fluorescent activated cell sorting (FACS), T1 gadolinium-enhanced magnetic resonance imaging (MRI), FITC-albumin leakage assays, microvessel isolation, western blotting and immunofluorescent microscopy, we show that in vivo stimulation of CNS infiltrating antigen-specific CD8 T cells initiates astrocyte activation, alteration of BBB tight junction proteins and increased CNS vascular permeability in a non-apoptotic manner. Using the aforementioned techniques, we found that despite having similar expansion of CD8 T cells in the brain as wildtype and Fas Ligand deficient animals, perforin deficient mice were resistant to tight junction alterations and CNS vascular permeability. To our knowledge, this study is the first to demonstrate that CNS infiltrating antigen-specific CD8 T cells have the capacity to initiate BBB tight junction disruption through a non-apoptotic perforin dependent mechanism and our model is one of few that are useful for studies in this field. These novel findings are highly relevant to the development of therapies designed to control immune mediated CNS vascular permeability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516328PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003037PLOS

Publication Analysis

Top Keywords

vascular permeability
28
cd8 cells
24
cns vascular
24
tight junction
16
blood brain
8
brain barrier
8
cns
8
cns infiltrating
8
infiltrating antigen-specific
8
antigen-specific cd8
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!