The molecular basis of CYP2D6-mediated N-dealkylation: balance between metabolic clearance routes and enzyme inhibition.

Drug Metab Dispos

Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R&D Mölndal, SE-431 81 Mölndal, Sweden.

Published: November 2008

N-dealkylation is a commonly observed metabolic reaction for drugs containing secondary and tertiary amines. On searching the literature, it is obvious that this reaction is far less common among cytochrome P450 2D6 catalyzed reactions compared with other cytochromes P450. The CYP2D6 pharmacophore and characteristic features in the active site cavity suggest a favored substrate orientation that prevents N-dealkylation from occurring. In this study, the literature was searched for N-dealkylated and non-N-dealkylated CYP2D6 substrates. The hypothesis that was suggested and confirmed demonstrated that N-dealkylation occurs by this enzyme when the preferred site of metabolism is blocked toward other oxidative metabolic pathways. An interesting observation was also that addition of stable groups at preferred sites of metabolism generally improved the metabolic stability but also resulted in retained or increased inhibition of the enzyme. In addition, the effect of pH on N- and O-dealkylation of dextromethorphan was shown to be consistent with the hypothesis that an ionized amino function favored substrate dockings resulting in O-dealkylation.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.108.022376DOI Listing

Publication Analysis

Top Keywords

favored substrate
8
molecular basis
4
basis cyp2d6-mediated
4
n-dealkylation
4
cyp2d6-mediated n-dealkylation
4
n-dealkylation balance
4
metabolic
4
balance metabolic
4
metabolic clearance
4
clearance routes
4

Similar Publications

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Volumetric bioprinting of the osteoid niche.

Biofabrication

January 2025

Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, BELGIUM.

Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin - GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl - GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50 % reduction in required light exposure dose resulting in an improved positive and negative resolution.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Vinylic phenylsulfones containing a β-hydroxyl stereocenter undergo a diastereoselective isomerization to the corresponding allylic isomer upon treatment with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU).

View Article and Find Full Text PDF

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!