AI Article Synopsis

  • Sustainable development involves improving environmental management and developing new technologies to tackle pollution in both aquatic and land habitats due to increasing human activity.
  • Bioremediation is highlighted as an eco-friendly and cost-effective method for removing pollutants using living organisms, but its success varies based on environmental conditions and microbial dynamics.
  • Recent advancements in genomic high-throughput technologies are enhancing our ability to assess and monitor the effectiveness of bioremediation processes in contaminated sites.

Article Abstract

Sustainable development requires the promotion of environmental management and a constant search for new technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation, i.e. the elimination of natural or xenobiotic pollutants by living organisms, is an environmentally friendly and cost-effective alternative to physico-chemical cleanup options. However, the strategy and outcome of bioremediation in open systems or confined environments depend on a variety of physico-chemical and biological factors that need to be assessed and monitored. In particular, microorganisms are key players in bioremediation applications, yet their catabolic potential and their dynamics in situ remain poorly characterized. To perform a comprehensive assessment of the biodegradative potential of a contaminated site and efficiently monitor changes in the structure and activities of microbial communities involved in bioremediation processes, sensitive, fast and large-scale methods are needed. Over the last few years, the scientific literature has revealed the progressive emergence of genomic high-throughput technologies in environmental microbiology and biotechnology. In this review, we discuss various high--throughput techniques and their possible--or already demonstrated-application to assess biotreatment of contaminated environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biotechadv.2008.07.004DOI Listing

Publication Analysis

Top Keywords

bioremediation
5
emerging high-throughput
4
high-throughput approaches
4
approaches analyze
4
analyze bioremediation
4
bioremediation sites
4
contaminated
4
sites contaminated
4
contaminated hazardous
4
hazardous and/or
4

Similar Publications

Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

Front Fungal Biol

December 2024

Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.

The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.

View Article and Find Full Text PDF

Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.

View Article and Find Full Text PDF

Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification.

Folia Microbiol (Praha)

January 2025

Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.

This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.

View Article and Find Full Text PDF

Sub-zero soil CO respiration in biostimulated hydrocarbon-contaminated cold-climate soil can be linked to the soil-freezing characteristic curve.

Environ Sci Pollut Res Int

January 2025

Department of Civil, Geological, and Environmental Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Engineering Building, Saskatoon, SK, S7N 5A9, Canada.

Extending unfrozen water availability is critical for stress-tolerant bioremediation of contaminated soils in cold climates. This study employs the soil-freezing characteristic curves (SFCCs) of biostimulated, hydrocarbon-contaminated cold-climate soils to efficiently address the coupled effects of unfrozen water retention and freezing soil temperature on sub-zero soil respiration activity. Freezing-induced soil respiration experiments were conducted under the site-relevant freezing regime, programmed from 4 to - 10 °C at a seasonal soil-freezing rate of - 1 °C/day.

View Article and Find Full Text PDF

The pursuit of materials, particularly plastics, with a minimal ecological footprint throughout their circular lifecycle, is crucial for advancing sustainable materials development. Living materials composed of embedded yet active organisms can leverage endogenous biotic resources to achieve functional materials that align with sustainability goals. However, current living material systems face challenges such as weak mechanical properties, limited environmental adaptability, and restricted cellular functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!