Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the global behavior of a non-linear susceptible-infectious-removed (SIR)-like epidemic model with a non-bilinear feedback mechanism, which describes the influence of information, and of information-related delays, on a vaccination campaign. We upgrade the stability analysis performed in d'Onofrio et al. [A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behavior, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol. 71 (2007) 301) and, at same time, give a special example of application of the geometric method for global stability, due to Li and Muldowney. Numerical investigations are provided to show how the stability properties depend on the interplay between some relevant parameters of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2008.07.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!