Gene expression requires proper messenger RNA (mRNA) export and translation. However, the functional links between these consecutive steps have not been fully defined. Gle1 is an essential, conserved mRNA export factor whose export function is dependent on the small molecule inositol hexakisphosphate (IP(6)). Here, we show that both Gle1 and IP(6) are required for efficient translation termination in Saccharomyces cerevisiae and that Gle1 interacts with termination factors. In addition, Gle1 has a conserved physical association with the initiation factor eIF3, and gle1 mutants display genetic interactions with the eIF3 mutant nip1-1. Strikingly, gle1 mutants have defects in initiation, whereas strains lacking IP(6) do not. We propose that Gle1 functions together with IP(6) and the DEAD-box protein Dbp5 to regulate termination. However, Gle1 also independently mediates initiation. Thus, Gle1 is uniquely positioned to coordinate the mRNA export and translation mechanisms. These results directly impact models for perturbation of Gle1 function in pathophysiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601711 | PMC |
http://dx.doi.org/10.1016/j.cell.2008.06.027 | DOI Listing |
Mol Cell
January 2025
Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.
View Article and Find Full Text PDFGenetics
December 2024
Department of Life Science and Biotechnology, Jadavpur University, Kolkata 7000 32, India.
In Saccharomyces cerevisiae, SKS1 mRNA encoding a glucose-sensing serine/threonine kinase belongs to "nucleus-retained" (NR) mRNAs representing a subset of otherwise normal transcripts, which exhibits slow nuclear export and excessively long nuclear dwell time. Nuclear retention of the SKS1 mRNA triggered by a 202 nt "export-retarding" nuclear zip code (NZ) element promotes its rapid degradation in the nucleus by the nuclear exosome/CTEXT. In this investigation, we demonstrate that Dbp2p, an ATP-dependent DEAD-box RNA helicase binds to SKS1 and other NR-mRNAs and thereby inhibits their export by antagonizing with the binding of the export factors Mex67p/Yra1p.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFJ Biol Chem
December 2024
mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City 14080, Mexico.
The kingdom of fungi contains highly diverse species. However, fundamental processes sustaining life such as RNA metabolism are much less comparatively studied in Fungi than in other kingdoms. A key factor in the regulation of mRNA expression is the cap-binding protein eIF4E, which plays roles in mRNA nuclear export, storage and translation.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia.
ENY2 is an evolutionarily conserved multifunctional protein and is a member of several complexes that regulate various stages of gene expression. ENY2 is a subunit of the TREX-2 complex, which is necessary for the export of bulk mRNA from the nucleus to the cytoplasm through the nuclear pores in many eukaryotes. The wide range of ENY2 functions suggests that it can also associate with other protein factors or complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!