The guinea pig as a model of infectious diseases.

Comp Med

School of Pharmacy, Division of Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, USA.

Published: August 2008

The words 'guinea pig' are synonymous with scientific experimentation, but much less is known about this species than many other laboratory animals. This animal model has been used for approximately 200 y and was the first to be used in the study of infectious diseases such as tuberculosis and diphtheria. Today the guinea pig is used as a model for a number of infectious bacterial diseases, including pulmonary, sexually transmitted, ocular and aural, gastrointestinal, and other infections that threaten the lives of humans. Most studies on the immune response to these diseases, with potential therapies and vaccines, have been conducted in animal models (for example, mouse) that may have less similarity to humans because of the large number of immunologic reagents available for these other species. This review presents some of the diseases for which the guinea pig is regarded as the premier model to study infections because of its similarity to humans with regard to symptoms and immune response. Furthermore, for diseases in which guinea pigs share parallel pathogenesis of disease with humans, they are potentially the best animal model for designing treatments and vaccines. Future studies of immune regulation of these diseases, novel therapies, and preventative measures require the development of new immunologic reagents designed specifically for the guinea pig.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706043PMC

Publication Analysis

Top Keywords

guinea pig
16
pig model
8
infectious diseases
8
animal model
8
studies immune
8
immune response
8
response diseases
8
similarity humans
8
immunologic reagents
8
diseases guinea
8

Similar Publications

This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.

View Article and Find Full Text PDF

Introduction: Most drug-resistant tuberculosis (DR-TB) occurs due to transmission of unsuspected or ineffectively treated DR-TB. The duration of treatment to stop person-to-person spread of DR-TB is uncertain. We evaluated the impact of novel regimens, including BPaL, on DR-TB transmission using the human-to-guinea pig (H-GP) transmission model.

View Article and Find Full Text PDF

Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.

View Article and Find Full Text PDF

The research conducted in this preclinical study assesses QazCovid-live, a live attenuated COVID-19 vaccine created in Kazakhstan, by conducting preclinical evaluations of safety, immunogenicity, and allergenicity in various animal models, including mice, rats, hamsters, and guinea pigs. The vaccine, developed by attenuating SARS-CoV-2 via numerous Vero cell passages, had no significant adverse effects in acute and subacute toxicity assessments, even at elevated dosages. Allergenicity testing indicated the absence of both immediate and delayed hypersensitivity reactions.

View Article and Find Full Text PDF

Herbal Extracts Mixed with Essential Oils: A Network Approach for Gastric and Intestinal Motility Disorders.

Nutrients

December 2024

Food Chemistry and Nutraceutical Laboratory, Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.

Background: Three herbal extracts ( Willd., Lorentz, and L.) were mixed with three essential oils ( Mill.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!