The swine influenza virus (SIV) strain A/Swine/TianJin/01/2004(H1N1) (A/S/TJ/04) was rescued successfully by an eight-plasmid rescue system. The cDNAs of SIV 8 gene segments were synthesized by RT-PCR and cloned into the RNA polymerase I/II bidirection expression vector PHW2000 independently, resulting in 8 recombinant plasmids. The 8 recombinant plasmids were cotransfected into COS-1 cell, 30 h later TPCK-trypsin was added to 0.5 microg/mL. The COS-1 cell and supernatant were harvested 48 h after cotransfection and were inoculated into the allantoic cavity of 9-day-old specific-pathogen free (SPF) chicken eggs. The allantoic fluid of dead eggs was harvested and passaged 3 generations in SPF chicken eggs to get infective virus. The successful rescue of A/S/TJ/04 SIV was identified by hemagglutination assay, hemagglutination inhibition assay, sequence analysis and electron microscope observation. The successful rescue of SIV built a platform for the research of the relationship between genome structure and function of SIV, the mechanisms of trans-species transmission of influenza virus and for the generation of new SIV as vaccine.
Download full-text PDF |
Source |
---|
Sci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFVirulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFRev Med Virol
January 2025
United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.
View Article and Find Full Text PDFJAMA Netw Open
December 2024
Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia.
Importance: Increasing the understanding of vaccine effectiveness (VE) against levels of severe influenza in children could help increase uptake of influenza vaccination and strengthen vaccine policies globally.
Objective: To investigate VE in children by severity of influenza illness.
Design, Setting, And Participants: This case-control study with a test-negative design used data from 8 participating medical centers located in geographically different US states in the New Vaccine Surveillance Network from November 6, 2015, through April 8, 2020.
Elife
December 2024
Biozentrum, Universität Basel, Basel, Switzerland.
As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host's immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!