Transmission ratio distortion (TRD) is frequently observed in inter- and intraspecific hybrids of plants, leading to a violation of Mendelian inheritance. Sex-independent TRD (siTRD) was detected in a hybrid between Asian cultivated rice and its wild ancestor. Here we examined how siTRD caused by an allelic interaction at a specific locus arose in Asian rice species. The siTRD is controlled by the S6 locus via a mechanism in which the S6 allele acts as a gamete eliminator, and both the male and female gametes possessing the opposite allele (S6a) are aborted only in heterozygotes (S6/S6a). Fine mapping revealed that the S6 locus is located near the centromere of chromosome 6. Testcross experiments using near-isogenic lines (NILs) carrying either the S6 or S6a alleles revealed that Asian rice strains frequently harbor an additional allele (S6n) the presence of which, in heterozygotic states (S6/S6n and S6a/S6n), does not result in siTRD. A prominent reduction in the nucleotide diversity of S6 or S6a carriers relative to that of S6n carriers was detected in the chromosomal region. These results suggest that the two incompatible alleles (S6 and S6a) arose independently from S6n and established genetically discontinuous relationships between limited constituents of the Asian rice population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2535691 | PMC |
http://dx.doi.org/10.1534/genetics.108.090126 | DOI Listing |
Nutrients
December 2024
Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
Background: Dyslipidemia, a leading risk factor for cardiovascular diseases (CVDs), significantly contributes to global morbidity and mortality. Rice bran, rich in bioactive compounds such as γ-oryzanol and tocotrienols, has demonstrated promising lipid-modulating effects.
Objective: This meta-analysis aimed to evaluate the effects of rice bran on lipid profiles, including triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), and identify factors influencing its efficacy across different populations and intervention conditions.
Nutrients
December 2024
Department of Public Health, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
Background: Community-dwelling older adults are at risk of malnutrition due to age-related declines in energy and nutrient intake. While the positive effect of dining companions on energy and nutrient intake has been suggested, evidence remains inconclusive. This study investigated the association between the number of dining companions and energy and nutrient intake, as well as the contribution of specific food groups to higher intake in the presence of dining companions.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
Elucidating the mechanisms underlying heat tolerance in rice (Oryza Sativa. L) is vital for adapting this crop to rising global temperature while increasing yields. Here, we identified a rice mutant, high temperature tolerance 1 (htt1), with high survival rates under heat stress.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!