Nutritional role of two algal symbionts in the temperate sea anemone Anthopleura elegantissima brandt.

Biol Bull

Shannon Point Marine Center and Department of Biology, Western Washington University, Bellingham, Washington 98225-9160, USA.

Published: August 2008

The intertidal sea anemone Anthopleura elegantissima in the Pacific Northwest may host a single type of algal symbiont or two different algal symbionts simultaneously: zooxanthellae (Symbiodinium muscatinei) and zoochlorellae (green algae; Trebouxiophyceae, Chlorophyta). A seasonal comparison of zooxanthellate and zoochlorellate anemones showed stable symbiont population densities in summer and winter, with densities of zoochlorellae about 4 times those of zooxanthellae. Photosynthesis-irradiance curves of freshly isolated symbionts show that the productivity (P(max) cell) of freshly isolated zooxanthellae was about 2.5 times that of zoochlorellae during July; comparable rates were obtained in other months. Models of algal carbon flux show that zoochlorellae may supply the host with more photosynthetic carbon per unit anemone biomass than zooxanthellae supply. Zooxanthellate anemone tissue was 2 per thousand ((13)C) and 5 per thousand ((15)N) enriched and zoochlorellate anemone tissue was 6 per thousand ((13)C) and 8 per thousand ((15)N) enriched over their respective symbionts, suggesting that zoochlorellate anemones receive less nutrition from their symbionts than do zooxanthellate individuals. The disparity between predicted contributions from the algal carbon budgets and the stable isotopic composition suggests that short-term measures of algal contributions may not reflect actual nutritional inputs to the host. Isotopic data support the hypothesis of substantial reliance on external food sources. This additional nutrition may allow both algae to persist in this temperate intertidal anemone in spite of differences in seasonal photosynthetic carbon contributions.

Download full-text PDF

Source
http://dx.doi.org/10.2307/25470685DOI Listing

Publication Analysis

Top Keywords

algal symbionts
8
sea anemone
8
anemone anthopleura
8
anthopleura elegantissima
8
zoochlorellate anemones
8
freshly isolated
8
algal carbon
8
photosynthetic carbon
8
anemone tissue
8
tissue 13c
8

Similar Publications

Symbiotic cnidarians, such as sea anemones and corals, rely on their mutualistic microalgal partners (Symbiodiniaceae) for survival. Marine heatwaves can disrupt this partnership, and it has been proposed that introducing experimentally evolved, heat-tolerant algal symbionts could enhance host thermotolerance. To test this hypothesis, the sea anemone Exaiptasia diaphana (a coral model) was inoculated with either the heterologous wild type or heat-evolved algal symbiont, Cladocopium proliferum, and homologous wild-type Breviolum minutum.

View Article and Find Full Text PDF

Friends and foes: symbiotic and algicidal bacterial influence on blooms.

ISME Commun

January 2025

Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.

Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms.

View Article and Find Full Text PDF

Coral reefs worldwide are threatened by increasing ocean temperatures because of the sensitivity of the coral-algal symbiosis to thermal stress. Reef-building corals form symbiotic relationships with dinoflagellates (family Symbiodiniaceae), including those species which acquire their initial symbiont complement predominately from their parents. Changes in the composition of symbiont communities, through the mechanisms of symbiont shuffling or switching, can modulate the host's thermal limits.

View Article and Find Full Text PDF

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Effects of the Symbiotic on the Host Ciliate Phenotypes.

Microorganisms

December 2024

Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Yamaguchi, Japan.

, a ciliated protist, forms a symbiotic relationship with the green alga . This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside in specialized compartments called perialgal vacuoles (PVs) within the host cytoplasm, which protect them from digestion by host lysosomal fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!