Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis serotype 2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576675 | PMC |
http://dx.doi.org/10.1128/JB.01532-07 | DOI Listing |
J Bacteriol
November 2008
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment.
View Article and Find Full Text PDFJ Biol Chem
April 2004
Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
Deacetoxycephalosporin/deacetylcephalosporin C synthase (DAOC/DACS) is an iron(II) and 2-oxoglutarate-dependent oxygenase involved in the biosynthesis of cephalosporin C in Cephalosporium acremonium. It catalyzes two oxidative reactions, oxidative ring-expansion of penicillin N to deacetoxycephalosporin C, and hydroxylation of the latter to give deacetylcephalosporin C. The enzyme is closely related to deacetoxycephalosporin C synthase (DAOCS) and DACS from Streptomyces clavuligerus, which selectively catalyze ring-expansion or hydroxylation reactions, respectively.
View Article and Find Full Text PDFJ Biol Chem
May 1998
Institute of Cardiovascular Sciences, Department of Physiology, Faculty of Medicine, University of Manitoba, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada.
Cytoplasmic Na+ and Ca2+ regulate the activity of Na+-Ca2+ exchange proteins, in addition to serving as the transported ions, and protein regions involved in these processes have been identified for the canine cardiac Na+-Ca2+ exchanger, NCX1.1. Although protein regions associated with Na+i- and Ca2+i-dependent regulation are highly conserved among cloned Na+-Ca2+ exchangers, it is unknown whether or not the structure-function relationships characteristic of NCX1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!