Expression of fatty acid synthase (FASN), the key enzyme in de novo synthesis of long-chain fatty acids, is normally low but increases in cancer. Consequently, FASN is a novel target for cancer therapy. However, because FASN inhibitors can lead to tumor stasis rather than shrinkage, noninvasive methods for assessing FASN inhibition are needed. To this end, we combined (1)H, (31)P, and (13)C magnetic resonance spectroscopy (MRS) (a) to monitor the metabolic consequences of FASN inhibition and (b) to identify MRS-detectable metabolic biomarkers of response. Treatment of PC-3 cells with the FASN inhibitor Orlistat for up to 48 h resulted in inhibition of FASN activity by 70%, correlating with 74% inhibition of fatty acid synthesis. Furthermore, we have determined that FASN inhibition results not only in lower phosphatidylcholine levels but also in a 59% drop in the phospholipid precursor phosphocholine (PCho). This drop resulted from inhibition in PCho synthesis as a result of a reduction in the cellular activity of its synthetic enzyme choline kinase. The drop in PCho levels following FASN inhibition was confirmed in SKOV-3 ovarian cancer cells treated with Orlistat and in MCF-7 breast cancer cells treated with Orlistat as well as cerulenin. Combining data from all treated cells, the drop in PCho significantly correlated with the drop in de novo synthesized fatty acid levels, identifying PCho as a potential noninvasive MRS-detectable biomarker of FASN inhibition in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553361PMC
http://dx.doi.org/10.1158/1535-7163.MCT-08-0015DOI Listing

Publication Analysis

Top Keywords

fasn inhibition
20
fatty acid
16
fasn
10
inhibition
9
acid synthase
8
drop pcho
8
cancer cells
8
cells treated
8
treated orlistat
8
drop
6

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer with a high metastatic rate and high mortality rate. The molecular mechanism of ccRCC development, however, needs further study. Aurora kinase B (AURKB) functions as an important oncogene in various tumors; therefore, in the present study, we aimed to explore the mechanism by which AURKB affects ccRCC development.

View Article and Find Full Text PDF

Background: Motile sperm domain containing 1 (MOSPD1) is overexpressed in colorectal, prostate, and breast cancers, but its role in gastric cancer (GC) progression remains unclear.

Methods: The effect of MOSPD1 was evaluated using cell viability, colony formation, wound healing, and Transwell assays. Triglyceride and lipid levels were measured in GC cells.

View Article and Find Full Text PDF

Bisphenol S Induces Lipid Metabolism Disorders in HepG2 and SK-Hep-1 Cells via Oxidative Stress.

Toxics

January 2025

Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, School of Public Health, Guilin Medical University, Guilin 541199, China.

Bisphenol S (BPS) is a typical endocrine disruptor associated with obesity. To observe BPS effects on lipid metabolism in HepG2 and SK-Hep-1 human HCC cells, a CCK-8 assay was used to assess cell proliferation in response to BPS, and the optimal concentration of BPS was selected. Biochemical indices such as triglyceride (TG) and total cholesterol (T-CHO), and oxidative stress indices such as malondialdehyde (MDA) and catalase (CAT) were measured.

View Article and Find Full Text PDF

Mesenchymal stem cell-mediated adipogenic transformation: a key driver of oral squamous cell carcinoma progression.

Stem Cell Res Ther

January 2025

Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: Interaction between mesenchymal stem cells (MSCs) and oral squamous cell carcinoma (OSCC) cells plays a major role in OSCC progression. However, little is known about adipogenic differentiation alteration in OSCC-derived MSCs (OSCC-MSCs) and how these alterations affect OSCC growth.

Methods: MSCs were successfully isolated and cultured from normal gingival tissue, OSCC peritumoral tissue, and OSCC tissue.

View Article and Find Full Text PDF

Oridonin inhibits SGIV infection by regulating glycolipid metabolism and inflammatory response.

Dev Comp Immunol

January 2025

College of Marine Sciences, South China Agricultural University, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China. Electronic address:

Singapore grouper iridovirus (SGIV) is a significant infectious disease in the grouper aquaculture industry. Currently, there is no effective drug available to prevent or treat SGIV. Oridonin (Ori) is a naturally occurring compound derived from Rabdosia rubescens, exhibiting various biological activities, including anti-tumor, anti-inflammatory, and antioxidant properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!