Ultrasonic backscatter measurements from vertebral bodies (L3 and L4) in nine women were performed using a clinical ultrasonic imaging system. Measurements were made through the abdomen. The location of a vertebra was identified from the bright specular reflection from the vertebral anterior surface. Backscattered signals were gated to isolate signal emanating from the cancellous interiors of vertebrae. The spectral centroid shift of the backscattered signal, which has previously been shown to correlate highly with bone mineral density (BMD) in human calcaneus in vitro, was measured. BMD was also measured in the nine subjects' vertebrae using a clinical bone densitometer. The correlation coefficient between centroid shift and BMD was r = -0.61. The slope of the linear fit was -160 kHz / (g/cm(2)). The negative slope was expected because the attenuation coefficient (and therefore magnitude of the centroid downshift) is known from previous studies to increase with BMD. The centroid shift may be a useful parameter for characterizing bone in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243223 | PMC |
http://dx.doi.org/10.1016/j.ultrasmedbio.2008.06.004 | DOI Listing |
Environ Monit Assess
January 2025
Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
Saussurea medusa is a rare alpine plant with significant medicinal value. To better understand the changes in its habitat in the context of climate change, this study used an optimized MaxEnt model to predict the current and future habitat of S. medusa under four shared socioeconomic pathways (SSPs) across three time periods (current, mid-century, and end-century) based on three climate system models.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Forestry, Guizhou University, Guiyang 550025, China.
Changes in species' habitats provide important insights into the effects of climate change. , a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its habitat suitability and distribution remain poorly understood.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following.
View Article and Find Full Text PDFInsects
December 2024
School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China.
Invasive alien species often undergo shifts in their ecological niches when they establish themselves in environments that differ from their native habitats. Fisher LaSalle (Hymenoptera: Eulophidae), specifically, has caused huge economic losses to trees in Australia. The global spread of cultivation has allowed to threaten plantations beyond its native habitat.
View Article and Find Full Text PDFSci Rep
December 2024
College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
Resources and land carrying capacity are vital to the survival and development of human society and form the foundation for ensuring food security. However, evaluating land carrying capacity solely based on grain production is overly simplistic. A comprehensive assessment from the perspective of dietary nutrition is needed to more accurately reflect the actual carrying capacity of land.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!