A molecular bar-coded DNA repair resource for pooled toxicogenomic screens.

DNA Repair (Amst)

Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, NY 12144, USA.

Published: November 2008

DNA damage from exogenous and endogenous sources can promote mutations and cell death. Fortunately, cells contain DNA repair and damage signaling pathways to reduce the mutagenic and cytotoxic effects of DNA damage. The identification of specific DNA repair proteins and the coordination of DNA repair pathways after damage has been a central theme to the field of genetic toxicology and we have developed a tool for use in this area. We have produced 99 molecular bar-coded Escherichia coli gene-deletion mutants specific to DNA repair and damage signaling pathways, and each bar-coded mutant can be tracked in pooled format using bar-code specific microarrays. Our design adapted bar-codes developed for the Saccharomyces cerevisiae gene-deletion project, which allowed us to utilize an available microarray product for pooled gene-exposure studies. Microarray-based screens were used for en masse identification of individual mutants sensitive to methyl methanesulfonate (MMS). As expected, gene-deletion mutants specific to direct, base excision, and recombinational DNA repair pathways were identified as MMS-sensitive in our pooled assay, thus validating our resource. We have demonstrated that molecular bar-codes designed for S. cerevisiae are transferable to E. coli, and that they can be used with pre-existing microarrays to perform competitive growth experiments. Further, when comparing microarray to traditional plate-based screens both overlapping and distinct results were obtained, which is a novel technical finding, with discrepancies between the two approaches explained by differences in output measurements (DNA content versus cell mass). The microarray-based classification of Deltatag and DeltadinG cells as depleted after MMS exposure, contrary to plate-based methods, led to the discovery that Deltatag and DeltadinG cells show a filamentation phenotype after MMS exposure, thus accounting for the discrepancy. A novel biological finding is the observation that while DeltadinG cells filament in response to MMS they exhibit wild-type sulA expression after exposure. This decoupling of filamentation from SulA levels suggests that DinG is associated with the SulA-independent filamentation pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613943PMC
http://dx.doi.org/10.1016/j.dnarep.2008.07.013DOI Listing

Publication Analysis

Top Keywords

dna repair
24
deltading cells
12
dna
9
molecular bar-coded
8
dna damage
8
repair damage
8
damage signaling
8
signaling pathways
8
specific dna
8
repair pathways
8

Similar Publications

Purification and transcriptomic characterization of proliferative cells of selectively affected by irradiation.

Front Parasitol

March 2024

Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

Flatworms depend on stem cells for continued tissue growth and renewal during their life cycles, making these cells valuable drug targets. While neoblasts are extensively characterized in the free-living planarian , and similar stem cells have been characterized in the trematode , their identification and characterization in cestodes is just emerging. Since stem cells are generally affected by irradiation, in this work we used this experimental approach to study the stem cells of the model cestode .

View Article and Find Full Text PDF

Nuclear Alpha-Synuclein in Parkinson's Disease and the Malignant Transformation in Melanoma.

Neurol Res Int

January 2025

Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico.

Alpha-synuclein (ASyn), a marker of Parkinson's disease (PD) and other neurodegenerative processes, plays pivotal roles in neuronal nuclei and synapses. ASyn and its phosphorylated form at Serine 129 (p-ASyn) are involved in DNA protection and repair, processes altered in aging, neurodegeneration, and cancer. To analyze the localization of p-ASyn in skin biopsies of PD patients and melanoma.

View Article and Find Full Text PDF

Aims: To explore physician-reported knowledge, use, and perceptions of genetic testing for advanced ovarian cancer management.

Materials & Methods: Gynecology/oncology specialists ( = 390) in the US, Europe, Canada, Japan, and Australia completed an online survey spanning March 2021 to April 2022.

Results: Physician-reported breast cancer gene mutation (BRCAm) testing rates increased over the 2 years before the survey; most patients underwent testing in the preceding 6 months.

View Article and Find Full Text PDF

Los olvidados: Non-BRCA variants associated with Hereditary breast cancer in Mexican population.

Breast Cancer Res

January 2025

Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.

Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.

View Article and Find Full Text PDF

DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!