Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase.

J Am Chem Soc

School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.

Published: September 2008

AI Article Synopsis

  • Immobilization of proteins on solid supports is essential for creating functional protein microarrays and developing biosensors and biocatalysts.
  • The method utilizes the phosphopantetheinyl transferase Sfp to enable efficient and site-specific covalent attachment of proteins tagged with ybbR to CoA-functionalized surfaces.
  • This process has been shown to retain high enzyme activity and effectiveness when applied to various proteins, demonstrating a straightforward and rapid one-step immobilization that can be performed even from crude cell lysate.

Article Abstract

Immobilization of proteins onto solid supports is important in the preparation of functional protein microarrays and in the development of bead-based bioassays, biosensors, and industrial biocatalysts. In order to generate the stable, functional, and homogeneous materials required for these applications, attention has focused on methods that enable the efficient and site-specific covalent immobilization of recombinant proteins onto a wide range of platforms. To this end, the phosphopantetheinyl transferase Sfp was employed to catalyze the direct immobilization of recombinant proteins bearing the small, genetically encoded ybbR tag onto surfaces functionalized with CoA. Using mass spectrometry, it was shown that the Sfp catalyzes immobilization of a model acyl carrier protein (ACP) onto CoA-derivatized PEGA resin beads through specific covalent bond formation. Luciferase (Luc) and glutathione-S-transferase (GST) ybbR-fusion proteins were similarly immobilized onto PEGA resin retaining high levels of enzyme activity. This strategy was also successfully applied for the immobilization of the ACP, as well as ybbR-Luc, -GST, and -thioredoxin fusion proteins, on hydrogel microarray slides. Overall, the Sfp-catalyzed surface ligation is mild, quantitative, and rapid, occurring in a single step without prior chemical modification of the target protein. Immobilization of the target proteins directly from a cell lysate mixture was also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja8030278DOI Listing

Publication Analysis

Top Keywords

protein immobilization
8
phosphopantetheinyl transferase
8
immobilization recombinant
8
recombinant proteins
8
pega resin
8
immobilization
7
proteins
6
direct site-selective
4
site-selective covalent
4
protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!