The reaction of bovine serum albumin (BSA) with [ trans-RuCl 4(Im)(dimethylsulfoxide)][ImH] (Im = imidazole) (NAMI-A), an experimental ruthenium(III) anticancer drug, and the formation of the respective NAMI-A/BSA adduct were investigated by X-ray absorption spectroscopy (XAS) at the sulfur and chlorine K-edges and at the ruthenium K- and L 3-edges. Ruthenium K and L 3-edge spectra proved unambiguously that the ruthenium center remains in the oxidation state +3 after protein binding. Comparative analysis of the chlorine K-edge XAS spectra of NAMI-A and NAMI-A/BSA, revealed that the chlorine environment is greatly perturbed upon protein binding. Only modest changes were observed in the sulfur K-edge spectra that are dominated by several protein sulfur groups. Overall, valuable information on the nature of this metallodrug/protein adduct and on the mechanism of its formation was gained; XAS spectroscopy turns out to be a very suitable method for the characterization of this kind of systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic8001477DOI Listing

Publication Analysis

Top Keywords

x-ray absorption
8
absorption spectroscopy
8
bovine serum
8
serum albumin
8
protein binding
8
exploiting soft
4
soft hard
4
hard x-ray
4
spectroscopy characterize
4
characterize metallodrug/protein
4

Similar Publications

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Refining the Distinct Cu-N Coordination in Mesoporous N-Doped Carbon to Boost Selective Deuteration under Mild Conditions.

ACS Appl Mater Interfaces

January 2025

The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.

Deuterated compounds have broad applications across various fields, with dehalogenative deuteration serving as an efficient method to obtain these molecules. However, the diverse electronic structures of active sites in the heterogeneous system and the limited recyclability in the homogeneous system significantly hinder the advancement of dehalogenative deuteration. In this study, we present a catalyst composed of copper single-atom sites anchored within an ordered mesoporous nitrogen-doped carbon matrix, synthesized via a mesopore confinement method.

View Article and Find Full Text PDF

In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.

View Article and Find Full Text PDF

Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.

View Article and Find Full Text PDF

Reversible phase transition and tunable band gap in zinc telluride induced by acoustic shock exposure.

Dalton Trans

January 2025

Shock Wave Research Laboratory, Department of Physics, Abdul Kalam Research Centre, Sacred Heart College, Tirupattur, affiliated to Thiruvalluvar University, Serkkadu, Tamil Nadu, 635 601, India.

In this study, Zinc Telluride (ZnTe) was subjected to acoustic shock waves with a Mach number of 1.5, transient pressure of 0.59 MPa, and a temperature of 520 K to analyze its stability against shock wave impact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!