On the spread of epidemics in a closed heterogeneous population.

Math Biosci

National Institutes of Health, NCBI, 8600 Rockville Pike, Bldg 38A room 8N811H, Bethesda, MD 20894, USA.

Published: October 2008

Heterogeneity is an important property of any population experiencing a disease. Here we apply general methods of the theory of heterogeneous populations to the simplest mathematical models in epidemiology. In particular, an SIR (susceptible-infective-removed) model is formulated and analyzed when susceptibility to or infectivity of a particular disease is distributed. It is shown that a heterogeneous model can be reduced to a homogeneous model with a nonlinear transmission function, which is given in explicit form. The widely used power transmission function is deduced from the model with distributed susceptibility and infectivity with the initial gamma-distribution of the disease parameters. Therefore, a mechanistic derivation of the phenomenological model, which is believed to mimic reality with high accuracy, is provided. The equation for the final size of an epidemic for an arbitrary initial distribution of susceptibility is found. The implications of population heterogeneity are discussed, in particular, it is pointed out that usual moment-closure methods can lead to erroneous conclusions if applied for the study of the long-term behavior of the models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2580825PMC
http://dx.doi.org/10.1016/j.mbs.2008.07.010DOI Listing

Publication Analysis

Top Keywords

population heterogeneity
8
susceptibility infectivity
8
transmission function
8
model
5
spread epidemics
4
epidemics closed
4
closed heterogeneous
4
heterogeneous population
4
heterogeneity property
4
property population
4

Similar Publications

Comprehensive histopathological analysis of gastric cancer in European and Latin America populations reveals differences in PDL1, HER2, p53 and MUC6 expression.

Gastric Cancer

January 2025

Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.

Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.

Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.

View Article and Find Full Text PDF

Purpose: There is an increasing incidence of young breast cancer (YBC) patients with uncertainty surrounding the factors and patterns that are contributing.

Methods: We obtained characteristics and survival data from 206,156 YBC patients (≤ 40 years of age) diagnosed between 2005 and 2019 from the National Cancer Database (NCDB). Patients were subdivided into two comparison groups based on year of diagnosis (2005-2009, Old vs.

View Article and Find Full Text PDF

The Stockholm Early Detection of Cancer Study (STEADY-CAN) cohort was established to investigate strategies for early cancer detection in a population-based context within Stockholm County, the capital region of Sweden. Utilising real-world data to explore cancer-related healthcare patterns and outcomes, the cohort links extensive clinical and laboratory data from both inpatient and outpatient care in the region. The dataset includes demographic information, detailed diagnostic codes, laboratory results, prescribed medications, and healthcare utilisation data.

View Article and Find Full Text PDF

Large-scale and detailed analyses of activity in the United States (US) remain limited. In this work, we leveraged the comprehensive wearable, demographic, and survey data from the All of Us Research Program, the largest and most diverse population health study in the US to date, to apply and extend the previous global findings on activity inequality within the context of the US. We found that daily steps differed by sex at birth, age, body characteristics, geography, and built environment.

View Article and Find Full Text PDF

Historical redlining and clustering of present-day breast cancer factors.

Cancer Causes Control

January 2025

Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY, 14214, USA.

Purpose: Historical redlining, a 1930s-era form of residential segregation and proxy of structural racism, has been associated with breast cancer risk, stage, and survival, but research is lacking on how known present-day breast cancer risk factors are related to historical redlining. We aimed to describe the clustering of present-day neighborhood-level breast cancer risk factors with historical redlining and evaluate geographic patterning across the US.

Methods: This ecologic study included US neighborhoods (census tracts) with Home Owners' Loan Corporation (HOLC) grades, defined as having a score in the Historic Redlining Score dataset; 2019 Population Level Analysis and Community EStimates (PLACES) data; and 2014-2016 Environmental Justice Index (EJI) data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!