A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multidepth screening of living cells using optical waveguides. | LitMetric

Multidepth screening of living cells using optical waveguides.

Biosens Bioelectron

Nanotechnology Centre, Cranfield University, Bedfordshire MK43 0AL, United Kingdom.

Published: December 2008

The use of planar optical waveguides as substrata for label-free, non-invasive monitoring of cells growing on them is demonstrated. Different submicrometre depths (measured from and perpendicular to the substratum surface) can be selected for monitoring. The so-called symmetry waveguide configuration with a low refractive index waveguide support (nanoporous silica with refractive index approximately 1.2) and a polystyrene waveguiding film with a heat-embossed grating coupler is exploited to obtain practically useful differences between the penetration depths of different waveguide modes. Robust data processing techniques are developed to obtain quantitative information about the cell refractive index profile perpendicular to the substratum from the measured effective refractive indices of the modes. In particular, a method is introduced with which cell refractive index variations above and below a predefined and tunable depth can be separated using two modes. The technique can be extended to more modes to gain even more comprehensive information from predefined submicrometre slices of the cell layer. The introduced methods are also suitable for monitoring the kinetics of changes in cell refractive index profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2008.06.059DOI Listing

Publication Analysis

Top Keywords

cell refractive
12
optical waveguides
8
perpendicular substratum
8
refractive
6
multidepth screening
4
screening living
4
living cells
4
cells optical
4
waveguides planar
4
planar optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!