Transplantation of mismatched allografts in irradiated recipients results in lethal graft- versus-host disease (GVHD). In our study, pretransplantation donor treatment with CpG, administered either alone or emulsified in incomplete Freund's adjuvant, efficiently prevented GVHD in sublethally irradiated recipients of haploidentical (H-2(b) into H-2(b/d)) and fully mismatched (H-2(b) into H-2(d)) allografts. CpG treatment of donor mice caused an accumulation of double-positive CD11bGr-1 cells in their blood and spleens, whereas treatment with CpG+IFA resulted in an even greater accumulation of these cells. Isolated CD11b(+) cells from the spleens of CpG+IFA-treated mice efficiently suppressed alloreactivity in vitro (> 92%), as determined by co-culturing these cells in mixed lymphocyte reactions. After CpG+IFA treatment, a T cell-depleted fraction enriched with CD11b(+)Gr-1(+) cells, acting as myeloid suppressor cells, was able to efficiently prevent GVHD induced by naïve T cells in the sublethally irradiated recipients: 20/21 mice remained GVHD-free survivors for more than 200 days. Splenocytes from CpG+IFA-treated mice displayed enhanced interleukin (IL)-6, IL-10, and interferon-gamma production, reduced T cell allogeneic and mitogenic responses, as well as failure of T cells to induce GVHD. In summary, CpG treatment led to impaired T cell function, enriched myeloid suppressor cells and regulatory cytokine production, which together appear to suppress alloreactivity and protect against the development of GVHD. We hypothesize that similar immunoregulatory effects could be applied experimentally in a clinical setting when inhibition of alloreactivity is required in recipients of stem cell allografts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2008.06.018DOI Listing

Publication Analysis

Top Keywords

irradiated recipients
12
cells
10
cd11b+gr-1+ cells
8
cells efficiently
8
sublethally irradiated
8
cpg treatment
8
cpg+ifa-treated mice
8
myeloid suppressor
8
suppressor cells
8
gvhd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!