Influence of genotyping error in linkage mapping for complex traits--an analytic study.

BMC Genet

Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Postzone S-05-P, PO Box 9600 2300 RC Leiden, The Netherlands.

Published: August 2008

Background: Despite the current trend towards large epidemiological studies of unrelated individuals, linkage studies in families are still thoroughly being utilized as tools for disease gene mapping. The use of the single-nucleotide-polymorphisms (SNP) array technology in genotyping of family data has the potential to provide more informative linkage data. Nevertheless, SNP array data are not immune to genotyping error which, as has been suggested in the past, could dramatically affect the evidence for linkage especially in selective designs such as affected sib pair (ASP) designs. The influence of genotyping error on selective designs for continuous traits has not been assessed yet.

Results: We use the identity-by-descent (IBD) regression-based paradigm for linkage testing to analytically quantify the effect of simple genotyping error models under specific selection schemes for sibling pairs. We show, for example, that in extremely concordant (EC) designs, genotyping error leads to decreased power whereas it leads to increased type I error in extremely discordant (ED) designs. Perhaps surprisingly, the effect of genotyping error on inference is most severe in designs where selection is least extreme. We suggest a genomic control for genotyping errors via a simple modification of the intercept in the regression for linkage.

Conclusion: This study extends earlier findings: genotyping error can substantially affect type I error and power in selective designs for continuous traits. Designs involving both EC and ED sib pairs are fairly immune to genotyping error. When those designs are not feasible the simple genomic control strategy that we suggest offers the potential to deliver more robust inference, especially if genotyping is carried out by SNP array technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533351PMC
http://dx.doi.org/10.1186/1471-2156-9-57DOI Listing

Publication Analysis

Top Keywords

genotyping error
32
snp array
12
selective designs
12
error
10
genotyping
10
designs
9
influence genotyping
8
array technology
8
immune genotyping
8
designs continuous
8

Similar Publications

In heme degradation, biliverdin reductase catalyzes the conversion of biliverdin to bilirubin. Defects in the biliverdin reductase A gene () causing biliverdinuria are extraordinarily rare in humans, and this inborn error of metabolism has not been reported in other mammals. The objective of this study was to diagnose biliverdinuria and identify the causal variants in two adult mixed-breed dogs with life-long green urine.

View Article and Find Full Text PDF
Article Synopsis
  • Gliclazide is a medication for type 2 diabetes, primarily metabolized by genetic variations in the CYP2C9 and CYP2C19 enzymes.
  • A physiologically based pharmacokinetic (PBPK) model was developed to analyze how these genetic differences affect gliclazide's effects in patients.
  • The model accurately predicted drug concentration levels in the bloodstream, meeting standard evaluation criteria and potentially paving the way for personalized treatment plans based on genetic profiles.
View Article and Find Full Text PDF

Modelling growth of two monocytogenes strains, persistent and non-persistent: Effect of temperature.

Heliyon

December 2024

Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia.

Better growth is a phenotypic trait that can contribute to persistence of in food processing environments. To test the hypothesis objectively, persistent and non-persistent strains were selected and grown in different media to gain reliable quantitative growth characteristics. In this study, the effect of temperature in the range from 6 °C to 43 °C on the planktonic growth of genotypically and phenotypically different strains LM9611-19 (LM-P, persistent) and LM120/5 (LM-S, sporadic - potentially non-persistent) in Tryptone Soy Broth (TSB) and in semi-synthetic cheese medium (SCM) was investigated.

View Article and Find Full Text PDF

Multiplex one-step direct asymmetric PCR of blood and dual-labelled probe-mediated melting curve for genotyping of MTHFR and MTRR polymorphisms.

RSC Adv

January 2025

Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University Luzhou Sichuan 646000 PR China

Accurate, rapid, and multiplex SNP analysis holds significant clinical value. However, the inevitable nucleic acid extraction, involving centrifugation, heating, and magnetic separation, is often time-consuming. In this study, direct blood PCR was combined with dual-labelled probe-mediated melting curves to identify SNPs corresponding to MTHFR (C677T, rs#1801133 and A1298C, rs#1801131) and MTRR (A66G, rs#1801394) in a single tube.

View Article and Find Full Text PDF

Evaluation of machine learning algorithms and computational structural validation of CYP2D6 in predicting the therapeutic response to tamoxifen in breast cancer.

Eur Rev Med Pharmacol Sci

December 2024

Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.

Objective: CYP2D6 plays a critical role in metabolizing tamoxifen into its active metabolite, endoxifen, which is crucial for its therapeutic effect in estrogen receptor-positive breast cancer. Single nucleotide polymorphisms (SNPs) in the CYP2D6 gene can affect enzyme activity and thus impact tamoxifen efficacy. This study aimed to use machine learning algorithms (MLAs) to identify significant predictors of Breast Cancer-Free Interval (BCFI) and to apply bioinformatics tools to investigate the structural and functional implications of CYP2D6 SNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!