Prokinetic effects of a ghrelin receptor agonist GHRP-6 in diabetic mice.

World J Gastroenterol

Department of General Surgery, The Affiliated Sixth Hospital of Medical School, Shanghai Jiaotong University, Shanghai 200233, China.

Published: August 2008

Aim: To investigate the effects of a ghrelin receptor agonist GHRP-6 on delayed gastrointestinal transit in alloxan-induced diabetic mice.

Methods: A diabetic mouse model was established by intraperitoneal injection with alloxan. Mice were randomized into two main groups: normal mice and diabetic mice treated with GHRP-6 at doses of 0, 20, 50, 100 and 200 microg/kg ip. Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT) were studied in mice after they had a phenol red meal following injection of GHRP-6. Based on the most effective GHRP-6 dosage, atropine was given at 1 mg/kg for 15 min before the GHRP-6 injection for each measurement. The mice in each group were sacrificed 20 min later and the percentages of GE, IT, and CT were calculated.

Results: Percentages of GE, IT, and CT were significantly decreased in diabetic mice as compared to control mice. In the diabetic mice, GHRP-6 improved both GE and IT, but not CT. The most effective dose of GHRP-6 was 200 microg/kg and atropine blocked the prokinetic effects of GHRP-6 on GE and IT.

Conclusion: GHRP-6 accelerates delayed GE and IT, but has no effect on CT in diabetic mice. GHRP-6 may exert its prokinetic effects via the cholinergic pathway in the enteric nervous system, and therefore, has therapeutic potential for diabetic patients with delayed upper gastrointestinal transit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739343PMC
http://dx.doi.org/10.3748/wjg.14.4795DOI Listing

Publication Analysis

Top Keywords

diabetic mice
20
prokinetic effects
12
ghrp-6
11
mice
10
effects ghrelin
8
ghrelin receptor
8
receptor agonist
8
agonist ghrp-6
8
diabetic
8
gastrointestinal transit
8

Similar Publications

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.

Chin J Integr Med

January 2025

Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).

Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.

View Article and Find Full Text PDF

Renal ischemia-reperfusion injury (IRI) is a common clinical condition that currently lacks effective treatment options. Inhibitors targeting the sodium-glucose co-transporter-2 (SGLT-2), recognized for their role in managing hyperglycemia, have demonstrated efficacy in enhancing the health outcomes for diabetic patients grappling with chronic kidney disease. Nevertheless, the precise impact of SGLT-2 inhibitors on renal ischemia-reperfusion injury (IRI) and the corresponding transcriptomic alterations remain to be elucidated.

View Article and Find Full Text PDF

Pathophysiological characterization of the ApoE mouse: A model of diabetes and atherosclerosis.

Methods

January 2025

Translational Research On Renal and Cardiovascular Diseases (TRECARD), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain. Electronic address:

The high prevalence of type 2 diabetes and atherosclerosis makes essential the availability of in vivo experimental models that accurately replicate the pathophysiological mechanisms of these diseases. Apolipoprotein E knockout mice (ApoE) have been used in atherosclerosis studies, and the db/db mice show hyperphagia and obesity. Mice harbouring both alterations (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!