A new controllable homogeneous precipitation approach has been developed to synthesize zinc-substituted nickel hydroxide nanostructures with different Zn contents from a zinc nanostructured reactant. As typical layered double hydroxides (LDHs), zinc-substituted nickel hydroxide nanostructures can be formulated as NiZnx(Cl)y(OH)2(1+x)-y.z H2O (x=0.34-0.89, y=0-0.24, z=0-1.36). The structure and morphology of zinc-substituted nickel hydroxide nanostructures can be systematically controlled by adjustment of the zinc content. The effects of temperature and the amounts of ammonia and zinc nanostructured precursor on the reaction were systematically investigated. In our new method, although zinc-substituted alpha-and beta-nickel hydroxides have the typical 3D flowerlike architecture and stacks-of-pancakes nanostructures, respectively, their growth processes are different from those previously reported. A coordinative homogeneous precipitation mechanism is proposed to explain the formation process of zinc-substituted nickel hydroxide nanostructures. The zinc-substituted nickel hydroxide nanostructures exhibit some interesting intrinsic properties, and changing the zinc content can effectively tune their optical, magnetic, and electrical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200800458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!