Altered renal morphology in transgenic mice with cholecystokinin overexpression.

Transgenic Res

Department of Anatomy, Faculty of Medicine, University of Tartu, Ravila 19, Biomedicum, Tartu 50411, Estonia.

Published: December 2008

Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman's capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-008-9204-5DOI Listing

Publication Analysis

Top Keywords

mice cholecystokinin
16
cholecystokinin overexpression
16
basement membranes
16
basement membrane
12
epithelial cells
12
distal tubules
12
glomerular basement
12
proximal distal
8
higher tubular
8
tubular basement
8

Similar Publications

: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [Ga]Ga-CyTMG and [Ga]Ga-CyFMG. In these probes, the SulfoCy5.

View Article and Find Full Text PDF

Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway.

Diabetes Metab J

December 2024

Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.

Background: Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.

View Article and Find Full Text PDF

Pancreatic endocrine-exocrine crosstalk plays a key role in normal physiology and disease. For instance, endocrine islet beta (β) cell secretion of insulin or cholecystokinin (CCK) promotes progression of pancreatic adenocarcinoma (PDAC), an exocrine cell-derived tumor. However, the cellular and molecular mechanisms that govern endocrine-exocrine signaling in tumorigenesis remain incompletely understood.

View Article and Find Full Text PDF

Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice.

Biochem Pharmacol

December 2024

Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia.

The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice.

View Article and Find Full Text PDF

Purpose: Radiolabelled minigastrin (MG) analogues targeting the cholecystokinin-2 receptor (CCK2R) have proven to be a promising approach for peptide receptor radionuclide therapy (PRRT). In this study, we report on the radiopharmaceutical development and standardization of the preparation of [Lu]Lu-DOTA-MGS5 using an automated synthesis module. Furthermore, we present the preclinical tests required to move forward towards a first therapeutic clinical trial as well as preliminary clinical dosimetry data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!