Gram-positive bacteria found as the sole Firmicutes present in two mineral bioleaching stirred tanks, and a third bacterium isolated from a heap leaching operation, were shown to be closely related to each other but distinct from characterized acidophilic iron- and sulfur-oxidizing bacteria of the genus Sulfobacillus, to which they were affiliated. One of the isolates (BRGM2) was shown to be a thermo-tolerant (temperature optimum 38.5 degrees C, and maximum 47 degrees C) obligate acidophile (pH optimum 1.5, and minimum 0.8), and also noted to be a facultative anaerobe, growing via ferric iron respiration in the absence of oxygen. Although isolates BRGM2 and TVK8 were able to metabolize many monomeric organic substrates, their propensity for autotrophic growth was found to be greater than that of Sulfobacillus thermosulfidooxidans and the related acidophile, Sb. acidophilus. Faster growth rates of the novel isolates in the absence of organic carbon was considered to be a major reason why they, rather than Sb. thermosulfidooxidans (which shared many physiological characteristics) more successfully exploited conditions in the stirred tanks. Based on their phylogenetic and phenotypic characteristics, the isolates are designated strains of the proposed novel species, Sulfobacillus benefaciens, with isolate BRGM2 nominated as the type strain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00792-008-0184-4DOI Listing

Publication Analysis

Top Keywords

sulfobacillus benefaciens
8
mineral bioleaching
8
stirred tanks
8
isolates brgm2
8
sulfobacillus
4
benefaciens nov
4
nov acidophilic
4
acidophilic facultative
4
facultative anaerobic
4
anaerobic firmicute
4

Similar Publications

A designed moderately thermophilic consortia with a better performance for leaching high grade fine lead-zinc sulfide ore.

J Environ Manage

February 2022

Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China. Electronic address:

Unwieldy fine sulfide ores are produced during mining; without being appropriately disposed of, they can cause environmental pollution and waste resources. This study investigated the leaching performance of a moderately thermophilic consortia (Leptospirillum ferriphilum + Acidithiobacillus caldus + Sulfobacillus benefaciens) for fine lead-zinc sulfide raw ore. The results showed this microbial community created a low pH, high ORP, and high cell concentration environment for mineral leaching, improving bioleaching efficiency.

View Article and Find Full Text PDF

A mixotrophic and acidophilic bacterial strain BGR 140 was isolated from mine tailings in the Harz Mountains near Goslar, Germany. Cells of BGR 140 were Gram-stain-positive, endospore-forming, motile and rod-shaped. BGR 140 grew aerobically at 25-55 °C (optimum 45 °C) and at pH 1.

View Article and Find Full Text PDF

Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of , and and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity.

View Article and Find Full Text PDF

Background: Bacteria of the genus Sulfobacillus are found worldwide as members of microbial communities that accelerate sulfide mineral dissolution in acid mine drainage environments (AMD), acid-rock drainage environments (ARD), as well as in industrial bioleaching operations. Despite their frequent identification in these environments, their role in biogeochemical cycling is poorly understood.

Results: Here we report draft genomes of five species of the Sulfobacillus genus (AMDSBA1-5) reconstructed by cultivation-independent sequencing of biofilms sampled from the Richmond Mine (Iron Mountain, CA).

View Article and Find Full Text PDF

Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.

FEMS Microbiol Lett

December 2013

School of Biological Sciences, Bangor University, Bangor, UK.

While many prokaryotic species are known to use hydrogen as an electron donor to support their growth, this trait has only previously been reported for two acidophilic bacteria, Hydrogenobaculum acidophilum (in the presence of reduced sulfur) and Acidithiobacillus (At.) ferrooxidans. To test the hypothesis that hydrogen may be utilized more widely by acidophilic bacteria, 38 strains of acidophilic bacteria, including representatives of 20 designated and four proposed species, were screened for their abilities to grow via the dissimilatory oxidation of hydrogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!