Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mechanical ventilation (MV) can induce ventilator-induced lung injury. A role for proinflammatory pathways has been proposed. The current studies analyzed the roles of Toll-like receptor (TLR) 4 and TLR2 involvement in the inflammatory response after MV in the healthy lung.
Methods: Wild-type (WT) C57BL6, TLR4 knockout (KO), and TLR2 KO mice were mechanically ventilated for 4 h. Bronchoalveolar lavage fluid was analyzed for presence of endogenous ligands. Lung homogenates were used to investigate changes in TLR4 and TLR2 expression. Cytokines were measured in lung homogenate and plasma, and leukocytes were counted in lung tissue.
Results: MV significantly increased endogenous ligands for TLR4 in bronchoalveolar lavage fluid and relative messenger RNA expression of TLR4 and TLR2 in lung tissue. In lung homogenates, MV in WT mice increased levels of keratinocyte-derived chemokine, interleukin (IL)-1alpha, and IL-1beta. In TLR4 KO mice, MV increased IL-1alpha but not IL-1beta, and the increase in keratinocyte-derived chemokine was less pronounced. In plasma, MV in WT mice increased levels of IL-6, keratinocyte-derived chemokine, and tumor necrosis factor alpha. In TLR4 KO mice, MV did not increase levels of IL-6 or tumor necrosis factor alpha, and the response of keratinocyte-derived chemokine was less pronounced. MV in TLR2 KO mice did not result in different cytokine levels compared with WT mice. In WT and TLR2 KO mice, but not in TLR4 KO mice, MV increased the number of pulmonary leukocytes.
Conclusions: The current study supports a role for TLR4 in the inflammatory reaction after short-term MV in healthy lungs. Increasing the understanding of the innate immune response to MV may lead to future treatment advances in ventilator-induced lung injury, in which TLR4 may serve as a therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ALN.0b013e318182aef1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!