Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme's interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)](2). The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg(2+) at the active site. A subset of amino acids engaged in contacts to RNA 2'-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme's interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689302 | PMC |
http://dx.doi.org/10.4161/cc.7.16.6461 | DOI Listing |
CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, India. Electronic address:
Long Interspersed Nuclear Element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:
R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.
View Article and Find Full Text PDFChembiochem
January 2025
Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein Cas9 system has been widely used for genome editing. However, the editing or cleavage specificity of CRISPR Cas9 remains a major concern due to the off-target effects. The existing approaches to control or modulate CRISPR Cas9 cleavage include engineering Cas9 protein and development of anti-CRISPR proteins.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
The development of new convenient tools for the design of multicomponent nucleic acid (NA) complexes is one of the challenges in biomedicine and NA nanotechnology. In this paper, we analyzed the formation of hybrid RNA/DNA concatemers and self-limited complexes by a pair of oligonucleotides using UV melting, circular dichroism spectroscopy, and a gel shift assay. Effects of the size of the linker between duplex-forming segments of the oligonucleotides on complexes' shape and number of subunits were compared and systematized for RNA/DNA, DNA/DNA, and RNA/RNA assemblies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!