Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe the use of spatial and temporal constraints in dynamic causal modelling (DCM) of magneto- and electroencephalography (M/EEG) data. DCM for M/EEG is based on a spatiotemporal, generative model of electromagnetic brain activity. The temporal dynamics are described by neural-mass models of equivalent current dipole (ECD) sources and their spatial expression is modelled by parameterized lead-field functions. Often, in classical ECD models, symmetry constraints are used to model homologous pairs of dipoles in both hemispheres. These constraints are motivated by assumptions about symmetric activation of bilateral sensory sources. In classical approaches, these constraints are 'hard'; i.e. the parameters of homologous dipoles are shared. Here, in the context of DCM, we illustrate the use of informed Bayesian priors to implement 'soft' symmetry constraints that are expressed in the posterior estimates only when supported by the data. Critically, with DCM one can deploy symmetry constraints in either the temporal or spatial components of the model. This enables one to test for symmetry in temporal (neural-mass) parameters in the presence of non-symmetric spatial expressions of homologous sources (and vice versa). Furthermore, we demonstrate that Bayesian model comparison can be used to identify the best models among a range of symmetric and non-symmetric variants. Our main finding is that the use of 'soft' symmetry priors is recommended for evoked responses to bilateral sensory input. We illustrate the use of symmetry constraints in DCM on synthetic and real EEG data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2008.07.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!