A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamical causal modelling for M/EEG: spatial and temporal symmetry constraints. | LitMetric

We describe the use of spatial and temporal constraints in dynamic causal modelling (DCM) of magneto- and electroencephalography (M/EEG) data. DCM for M/EEG is based on a spatiotemporal, generative model of electromagnetic brain activity. The temporal dynamics are described by neural-mass models of equivalent current dipole (ECD) sources and their spatial expression is modelled by parameterized lead-field functions. Often, in classical ECD models, symmetry constraints are used to model homologous pairs of dipoles in both hemispheres. These constraints are motivated by assumptions about symmetric activation of bilateral sensory sources. In classical approaches, these constraints are 'hard'; i.e. the parameters of homologous dipoles are shared. Here, in the context of DCM, we illustrate the use of informed Bayesian priors to implement 'soft' symmetry constraints that are expressed in the posterior estimates only when supported by the data. Critically, with DCM one can deploy symmetry constraints in either the temporal or spatial components of the model. This enables one to test for symmetry in temporal (neural-mass) parameters in the presence of non-symmetric spatial expressions of homologous sources (and vice versa). Furthermore, we demonstrate that Bayesian model comparison can be used to identify the best models among a range of symmetric and non-symmetric variants. Our main finding is that the use of 'soft' symmetry priors is recommended for evoked responses to bilateral sensory input. We illustrate the use of symmetry constraints in DCM on synthetic and real EEG data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2008.07.041DOI Listing

Publication Analysis

Top Keywords

symmetry constraints
20
causal modelling
8
spatial temporal
8
constraints
8
bilateral sensory
8
'soft' symmetry
8
symmetry
7
spatial
5
temporal
5
dcm
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!