Nestin-expressing cells were identified in the normal rat heart characterized by a small cell body and numerous processes and following an ischemic insult migrated to the infarct region. The present study was undertaken to identify the phenotype, origin and biological role of nestin-expressing cells during reparative fibrosis. A neural stem cell phenotype was identified based on musashi-1 expression, growth as a neurosphere, and differentiation to a neuronal cell. Using the Wnt1-cre; Z/EG transgenic mouse model, which expresses EGFP in embryologically-derived neural crest cells, the reporter signal was detected in nestin-expressing cells residing in the heart. In infarcted human hearts, nestin-expressing cells were detected in the viable myocardium and the scar and morphologically analogous to the population identified in the rat heart. Following either an ischemic insult or the acute administration of 6-hydroxydopamine, sympathetic sprouting was dependent on the physical association of neurofilament-M immunoreactive fibres with nestin-positive processes emanating from neural stem cells. To specifically study the biological role of the subpopulation in the infarct region, neural stem cells were isolated from the scar, fluorescently labelled and transplanted in the heart of 3-day post-MI rats. Injected scar-derived neural stem cells migrated to the infarct region and were used as a substrate for de novo blood vessel formation. These data have demonstrated that the heart contains a resident population of neural stem cells derived from the neural crest and participate in reparative fibrosis. Their manipulation could provide an alternative approach to ameliorate the healing process following ischemic injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2008.07.013DOI Listing

Publication Analysis

Top Keywords

neural stem
24
nestin-expressing cells
16
stem cells
16
rat heart
12
infarct region
12
cells
9
neural
8
stem cell
8
sympathetic sprouting
8
ischemic insult
8

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair.

ACS Nano

December 2024

Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!