Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The partitioning behavior of pentacyanonitrosilmetallate complexes[Fe(CN) 5 NO] (2-), [Mn(CN) 5 NO] 3(-), and [Cr(CN) 5 NO] 3(-)has been studied in aqueous two-phase systems (ATPS) formed by adding poly(ethylene oxide) (PEO; 4000 g mol (-1)) to an aqueous salt solution (Li2 SO4, Na2 SO4, CuSO4, or ZnSO4). The complexes partition coefficients ( K complex) in each of these ATPS have been determined as a function of increasing tie-line length (TLL) and temperature. Unlike the partition behavior of most ions, [Fe(CN) 5 NO] 2(-) and [Mn(CN) 5 NO] 3(-) anions are concentrated in the polymer-rich phase with K values depending on the nature of the central atom as follows: K [Fe(C N) 5 NO] 2 - >> K [ Mn (CN 5 NO] 3 - > K [C r (C N) 5 NO ]3 - . The effect of ATPS salts in the complex partitioning behavior has also been verified following the order Li2 SO 4 > Na2 SO 4 > ZnSO4. Thermodynamic analysis revealed that the presence of anions in the polymer-rich phase is caused by an EO-[M(CN) 5 NO] ( x- ) (M = Fe, Mn, or Cr) enthalpic interaction. However, when this enthalpic interaction is weak, as in the case of the [Cr(CN) 5 NO]3(-) anion ( K [Cr(CN 5 NO] 3 - < 1), entropic driving forces dominate the transfer process, then causing the anions to concentrate in the salt-rich phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp711617z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!