The protozoan parasite Marteilioides chungmuensis causes irregular enlargement of the ovary in the Pacific oyster Crassostrea gigas. The parasite invades the oyster through the epithelial tissue of the labial palp, replicates in the connective tissue, and then moves to the gonad, producing spores inside the oocytes. In this study the seasonality and invasion period of the parasite into the host was investigated over a 1 yr cycle. Uninfected 1 and 0 yr old (spat) oysters were placed in an epizootic area every month from July 2004 to July 2005 and September 2005 to March 2006, respectively, and left for 1 mo. Labial palps and gonad were sampled monthly and examined for infection by nested PCR and histological observations. Prevalence of infection detected by PCR was 70% or higher from August to October, but declined sharply in November and reached 7% or lower from February to April. To explain the low detection rate in winter, 1 yr old uninfected oysters were placed in an epizootic area in winter (water temperature: 8 to 10 degrees C) for 2 wk and then transferred to M. chungmuensis-free seawater at 24 degrees C. Although prevalence of infection was ca. 7% before transfer to heated seawater, levels of 87% were detected after 1 wk. After a 3 wk exposure to heated seawater, parasites were found in host oocytes by histological observation. It was concluded that the low prevalence in winter was due to insufficient replication of M. chungmuensis at low seawater temperatures, resulting in levels not detectable by nested PCR, and not to the absence of invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3354/dao01924 | DOI Listing |
Genes (Basel)
February 2021
GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Dr., Sippy Downs QLD 4556, Australia.
Genomic selection has been widely used in terrestrial animals but has had limited application in aquaculture due to relatively high genotyping costs. Genomic information has an important role in improving the prediction accuracy of breeding values, especially for traits that are difficult or expensive to measure. The purposes of this study were to further evaluate the use of genomic information to improve prediction accuracies of breeding values from, compare different prediction methods (BayesA, BayesCπ and GBLUP) on prediction accuracies in our field data, and investigate the effects of different SNP marker densities on prediction accuracies of traits in the Portuguese oyster ().
View Article and Find Full Text PDFDis Aquat Organ
July 2014
Nucleus for Aquatic Pathology Studies, Federal University of Santa Catarina (UFSC), Rodovia Admar Gonzaga, 1346, 88040-900, Florianópolis, Santa Catarina (SC), Brazil.
The impacts of oocyte parasites on the reproductive success of molluscs are largely unknown. In this study, we evaluated the presence of gonad parasites in 6 species of marine bivalve molluscs native to southern Brazil. Cultured bivalves included the mangrove oyster Crassostrea gasar (sometimes called C.
View Article and Find Full Text PDFThe oyster ovarian parasite Marteilioides chungmuensis has been reported from Korea and Japan, damaging the oyster industries. Recently, Marteilioides-like organisms have been identified in other commercially important marine bivalves. In this study, we surveyed Marteilioides infection in the Manila clam Ruditapes philippinarum, Suminoe oyster Crassostrea ariakensis, and Pacific oyster Crassostrea gigas, using histology and Marteilioides-specific small subunit (SSU) rDNA PCR.
View Article and Find Full Text PDFJ Invertebr Pathol
September 2012
Fish Pathology Division, National Fisheries Research and Development Institute (NFRDI), 408-1 Silang, Gijang, Busan, Republic of Korea.
The eggs of the Pacific oyster, Crassostraea gigas, become infertile when infected by the parasite Marteilioides chungmuensis. Histologically, M. chungmuensis infects the oyster oocyte cytoplasm, and the ovaries take on a "lumpy" appearance once infected, which lowers commercial value of the oyster.
View Article and Find Full Text PDFKorean J Parasitol
September 2011
Pathology Division, National Fisheries Research and Development Institute, Busan 619-705, Korea.
In order to assess changes in the activity of immunecompetency present in Crassostrea gigas infected with Marteilioides chungmuensis (Protozoa), the total hemocyte counts (THC), hemocyte populations, hemocyte viability, and phagocytosis rate were measured in oysters using flow cytometry. THC were increased significantly in oysters infected with M. chungmuensis relative to the healthy appearing oysters (HAO) (P<0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!