Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome.
Methodology/principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogeneous. Genetic markers were identified that could discriminate between the two clades and cluster 1.
Conclusions/significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2515634 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003018 | PLOS |
Microb Genom
January 2025
Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; UMR MIVEGEC, Université de Montpellier, IRD, CNRS, Montpellier, France.
Carbapenemase-producing Enterobacterales are pathogens classified as a critical priority by the World Health Organization and a burden on human health worldwide. IMI, NmcA, and FRI are under-detected class A carbapenemases that have been reported in the human, animal and environmental compartments, particularly these last 5 years. Bacteria producing these carbapenemases have been mostly identified in digestive carriage screenings, but they are also involved in severe infections, such as bacteremia.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
Carbapenem-resistant complex (CR-ECC), which is rapidly increasing as the cause of nosocomial infections, has limited treatment options. The aim of this study is to investigate the microbiological and clinical traits and molecular epidemiology of isolates of CR-ECC and provide guidance for antibiotic selection in clinical practice. Clinical CR-ECC isolates (ertapenem MIC ≥ 2 mg/L) were collected from 2021 to 2022.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratorio de Microbiología Experimental y Aplicada y Microbiología de Aguas (LAMEXA-LAMA), Universidad de Panamá, Panamá, Panamá.
The Enterobacter cloacae complex, a prominent bacterium responsible worldwide for most bloodstream infections in the hospital environment, has shown broad-spectrum antibiotic resistance, including carbapenems. Therefore, bacteriophages have again attracted the attention of the science and medical community as an alternative to control Multidrug resistant bacteria. In this study, water samples from Río Abajo River, in Panama City, Panama, were collected, for phage isolation, purification, characterization and propagation against the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!