We present a sequential algorithm for estimating both concentration dependence on range and time and backscatter coefficient spectral dependence of optically thin localized atmospheric aerosols using data from rapidly tuned lidar. The range dependence of the aerosol is modeled as an expansion of the concentration in an orthonormal basis set whose coefficients carry the time dependence. Two estimators are run in parallel: a Kalman filter for the concentration range and time dependence and a maximum-likelihood estimator for the aerosol backscatter wavelength and time dependence. These two estimators exchange information continuously over the data-processing stream. The state model parameters of the Kalman filter are also estimated sequentially together with the concentration and backscatter. Lidar data collected prior to the aerosol release are used to estimate the ambient lidar return. The approach is illustrated on atmospheric backscatter long-wave infrared (CO2) lidar data.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.47.004309DOI Listing

Publication Analysis

Top Keywords

lidar data
12
time dependence
12
range time
8
dependence estimators
8
kalman filter
8
dependence
6
concentration
5
backscatter
5
lidar
5
simultaneous estimation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!