DNA double-strand breaks (DSBs) are repaired by two principal mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is the most accurate DSB repair mechanism but is generally restricted to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as a repair template. By contrast, NHEJ operates throughout the cell cycle but assumes most importance in G1 (refs 4, 6). The choice between repair pathways is governed by cyclin-dependent protein kinases (CDKs), with a major site of control being at the level of DSB resection, an event that is necessary for HR but not NHEJ, and which takes place most effectively in S and G2 (refs 2, 5). Here we establish that cell-cycle control of DSB resection in Saccharomyces cerevisiae results from the phosphorylation by CDK of an evolutionarily conserved motif in the Sae2 protein. We show that mutating Ser 267 of Sae2 to a non-phosphorylatable residue causes phenotypes comparable to those of a sae2Delta null mutant, including hypersensitivity to camptothecin, defective sporulation, reduced hairpin-induced recombination, severely impaired DNA-end processing and faulty assembly and disassembly of HR factors. Furthermore, a Sae2 mutation that mimics constitutive Ser 267 phosphorylation complements these phenotypes and overcomes the necessity of CDK activity for DSB resection. The Sae2 mutations also cause cell-cycle-stage specific hypersensitivity to DNA damage and affect the balance between HR and NHEJ. These findings therefore provide a mechanistic basis for cell-cycle control of DSB repair and highlight the importance of regulating DSB resection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635538 | PMC |
http://dx.doi.org/10.1038/nature07215 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Microbiology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510000, China.
The LIM-domain-only protein LMO2 interacts with LDB1 in context-dependent multiprotein complexes and plays key roles in erythropoiesis and T cell leukemogenesis, but whether they have any roles in B cells is unclear. Through a CRISPR/Cas9-based loss-of-function screening, we identified LMO2 and LDB1 as factors for class switch recombination (CSR) in murine B cells. LMO2 contributes to CSR at least in part by promoting end joining of DNA double-strand breaks (DSBs) and inhibiting end resection.
View Article and Find Full Text PDFMol Biol (Mosk)
December 2024
Institute of Functional Genomics, Moscow State University, Moscow, 119991 Russia.
The CRISPR/Cas technology of targeted genome editing made it possible to carry out genetic engineering manipulations with eukaryotic genomes with a high efficiency. Targeted induction of site-specific DNA breaks is one of the key stages of the technology. The cell repairs the breaks via one of the two pathways, nonhomologous end joining (NHEJ) and homology-driven repair (HDR).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA.
Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus.
View Article and Find Full Text PDFBMC Biol
December 2024
Department of Genome Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.
Background: The expansion of CAG/CTG repeats in functionally unrelated genes is a causative factor in many inherited neurodegenerative disorders, including Huntington's disease (HD), spinocerebellar ataxias (SCAs), and myotonic dystrophy type 1 (DM1). Despite many years of research, the mechanism responsible for repeat instability is unknown, and recent findings indicate the key role of DNA repair in this process. The repair of DSBs induced by genome editing tools results in the shortening of long CAG/CTG repeats in yeast models.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512, Ibaraki, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!