Apolipoprotein E (apoE) plays a role in the pathogenesis of Alzheimer disease (AD). It is involved in the receptor-mediated cellular clearance of the amyloid beta-protein (Abeta) and in the perivascular drainage of the extracellular fluid. Microvascular changes are also associated with AD and have been discussed as a possible reason for altered perivascular drainage. To further clarify the role of apoE in the perivascular and vascular pathology in AD patients, we studied its occurrence and distribution in the perivascular space, the perivascular neuropil, and in the vessel wall of AD and control cases with and without small vessel disease (SVD). Apolipoprotein E was found in the perivascular space and in the neuropil around arteries of the basal ganglia from control and AD cases disclosing no major differences. Western blot analysis of basal ganglia tissue also revealed no significant differences pertaining to the amount of full-length and C-terminal truncated apoE in AD cases compared with controls. In contrast, Abeta occurred in apoE-positive perivascular astrocytes in AD cases but not in controls. In blood vessels, apoE and immunoglobulin G were detected within the SVD-altered vessel wall. The severity of SVD was associated with the occurrence of apoE in the vessel wall and with that of Abeta in perivascular astrocytes. These results point to an important role of apoE in the perivascular clearance of Abeta in the human brain. The occurrence of apoE and immunoglobulin G in SVD lesions and in the perivascular space suggests that the presence of SVD results in plasma-protein leakage into the brain. It is therefore tempting to speculate that apoE represents a pathogenetic link between SVD and AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/NEN.0b013e3181836a71 | DOI Listing |
J Neuropathol Exp Neurol
January 2025
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.
Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.
Brain
January 2025
Institute of Neurological Sciences and Psychiatry, Hacettepe University, 06100, Ankara, Turkey.
Cortical spreading depolarization (CSD), the neurophysiological event believed to underlie aura, may trigger migraine headaches through inflammatory signaling that originates in neurons and spreads to the meninges via astrocytes. Increasing evidence from studies on rodents and migraine patients supports this hypothesis. The transition from pro-inflammatory to anti-inflammatory mechanisms is crucial for resolving inflammation.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
School of Physical Education and Sports Science, South China Normal University, Guangzhou, CHINA.
Purpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.
Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.
Int J Mol Sci
January 2025
Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 20201, USA.
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!