Effect of microneedle design on pain in human volunteers.

Clin J Pain

Center for Drug Design, Development and Delivery, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.

Published: September 2008

Objectives: To design microneedles that minimize pain, this study tested the hypothesis that microneedles cause significantly less pain than a 26-gauge hypodermic needle, and that decreasing microneedle length and the number of microneedles reduces pain in normal human volunteers.

Methods: Single microneedles with lengths ranging from 480 to 1450 microm, widths from 160 to 465 microm, thicknesses from 30 to 100 microm, and tip angles from 20 to 90 degrees; and arrays containing 5 or 50 microneedles were inserted into the volar forearms of 10 healthy, human volunteers in a double-blinded, randomized study. Visual analog scale pain scores were recorded and compared with each other and to the pain from a 26-gauge hypodermic needle.

Results: All microneedles investigated were significantly less painful than the hypodermic needle with microneedle pain scores varying from 5% to 40% of the hypodermic needle. Microneedle length had the strongest effect on pain, where a 3-fold increase in length increased the pain score by 7-fold. The number of microneedles also affected the pain score, where a 10-fold increase in the number of microneedles increased pain just over 2-fold. Microneedle tip angle, thickness, and width did not significantly influence pain.

Discussion: Microneedles are significantly less painful than a 26-gauge hypodermic needle over the range of dimensions investigated. Decreasing microneedle length and number of microneedles reduces pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917250PMC
http://dx.doi.org/10.1097/AJP.0b013e31816778f9DOI Listing

Publication Analysis

Top Keywords

hypodermic needle
16
number microneedles
16
pain
12
26-gauge hypodermic
12
microneedle length
12
microneedles
10
human volunteers
8
microneedles pain
8
pain 26-gauge
8
decreasing microneedle
8

Similar Publications

Microneedle-delivered adeno-associated virus vaccine amplified anti-viral immunity by improving antigen-presenting cells infection.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Adeno-associated viruses (AAV) have significant potential as vaccine carriers due to their excellent biosafety and efficient antigen gene delivery. However, most AAV vaccines show limited capacity to transduce antigen-presenting cells (APCs) following intramuscular injection which may cause inadequate cellular immune responses and undesired side effects due to transducing other tissues or cells. Herein, we developed a soluble microneedle patch for targeting the AAV vaccines to the epidermal and dermal APCs.

View Article and Find Full Text PDF

A network-enabled pipeline for gene discovery and validation in non-model plant species.

Cell Rep Methods

January 2025

MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Identifying key regulators of important genes in non-model crop species is challenging due to limited multi-omics resources. To address this, we introduce the network-enabled gene discovery pipeline NEEDLE, a user-friendly tool that systematically generates coexpression gene network modules, measures gene connectivity, and establishes network hierarchy to pinpoint key transcriptional regulators from dynamic transcriptome datasets. After validating its accuracy with two independent datasets, we applied NEEDLE to identify transcription factors (TFs) regulating the expression of cellulose synthase-like F6 (CSLF6), a crucial cell wall biosynthetic gene, in Brachypodium and sorghum.

View Article and Find Full Text PDF

Morphological, physiological and transcriptional analyses provide insights into the biosynthesis of phenolics in Juniperus rigida under UV-B treatment.

Plant Physiol Biochem

January 2025

College of Forestry, Northwest A & F University, Yangling, 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A & F University, Yangling, 712100, China. Electronic address:

Phenolics play a crucial role in plant defense mechanisms against increased UV-B radiation. Due to their significant medicinal properties, the phenolic compounds produced by Juniperus rigida have great potential as valuable sources for medicine. However, the process of synthesizing J.

View Article and Find Full Text PDF

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Background: Traditional childhood uvulectomy (TCU) is an unregulated cultural practice associated with significant health risks, including infections, anemia, aspiration, and oral or pharyngeal injuries. The reuse of unsafe tools such as blades, needles, or thread loops exacerbates the spread of infectious diseases like HIV and hepatitis B. Despite its clinical significance, the pooled prevalence and associated factors of TCU have not been adequately examined through systematic reviews or meta-analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!