Cytoplasmic Cu/Zn superoxide dismutase (SOD1) is an antioxidant enzyme that converts superoxide to hydrogen peroxide in cells. Its spatial distribution matches that of superoxide production, allowing it to protect cells from oxidative stress. SOD1 deficiencies result in embryonic lethality and a wide range of pathologies in mice, but little is known about normal SOD1 protein expression in developing embryos. In this study, the expression pattern of SOD1 was investigated in post-implantation mouse embryos and extraembryonic tissues, including placenta, using Western blotting and immunohistochemical analyses. SOD1 was detected in embryos and extraembryonic tissues from embryonic day (ED) 8.5 to 18.5. The signal in embryos was observed at the lowest level on ED 9.5-11.5, and the highest level on ED 17.5-18.5, while levels remained constant in the surrounding extraembryonic tissues during all developmental stages examined. Immunohistochemical analysis of SOD1 expression on ED 13.5-18.5 revealed its ubiquitous distribution throughout developing organs. In particular, high levels of SOD1 expression were observed in the ependymal epithelium of the choroid plexus, ganglia, sensory cells of the olfactory and vestibulocochlear epithelia, blood cells and vessels, hepatocytes and hematopoietic cells of the liver, lymph nodes, osteogenic tissues, and skin. Thus, SOD1 is highly expressed at late stages of embryonic development in a cell- and tissue-specific manner, and can function as an important antioxidant enzyme during organogenesis in mouse embryos.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811834 | PMC |
http://dx.doi.org/10.4142/jvs.2008.9.3.233 | DOI Listing |
Life (Basel)
January 2025
Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia.
Background: Numerous studies have shown the presence of multiple defence factors in placental tissue, although their role is partially understood; therefore, the aim of this study was to evaluate the expression of nuclear factor-kappa B (NF-κB); human beta-defensin 2, 3, and 4 (HBD-2,3,4); cathelicidine (LL-37); heat shock protein 60 (HSP60); and interleukin 10 (IL-10) in dissimilar gestational week placental tissue and display correlations between immunoreactive cells.
Methods: A total of 15 human placental tissue samples were acquired from mothers with different gestational weeks: 28, 31, and 40. Routine staining and immunohistochemistry for the samples were executed.
Hum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
In chick embryos before primitive streak formation, the outermost extra-embryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Immediately internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner area pellucida (AP) epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent AP epiblast.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/05f950310 Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac.
View Article and Find Full Text PDFAfr J Reprod Health
December 2024
Department of Obstetrics and Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine,Changshu 215500, Jiang Su,China.
The study was designed to appraise the effects of early antibiotic administration on reproductive tract infections and fetal membrane cell scorching in instances of premature rupture of membranes (PROM). A total of 107 pregnant women diagnosed with PROM between July 2020 and June 2022 were randomly assigned to two groups: the Intervention (n=54), where ampicillin were administered within 24 hours of PROM onset, and the control group (n=53), where ampicillin were given 24-48 hours after PROM. Maternal and neonatal outcomes, incidence of reproductive tract infections, and fetal membrane cell scorching indicators (Caspase-1, Caspase -3, Caspase-9 and IL-β) were compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!