Staphylococcus aureus scavenges heme-iron from host hemoproteins using iron-regulated surface determinant (Isd) proteins. IsdC is the central conduit through which heme is passed across the cell wall and binds this molecule using a NEAr Transporter (NEAT) domain. NMR spectroscopy was used to determine the structure of IsdC in complex with a heme analog, zinc-substituted protoporphyrin IX (ZnPPIX). The backbone coordinates of the ensemble of conformers representing the structure exhibit a root mean square deviation to the mean structure of 0.53 +/- 0.11 angstroms. IsdC partially buries protoporphyrin within a large hydrophobic pocket that is located at the end of its beta-barrel structure. The central metal ion of the analog adopts a pentacoordinate geometry in which a highly conserved tyrosine residue serves as a proximal ligand. Consistent with the structure and its role in heme transfer across the cell wall, we show that IsdC weakly binds heme (K(D) = 0.34 +/- 0.12 microm) and that ZnPPIX rapidly dissociates from the protein at a rate of 126 +/- 30 s(-1). NMR studies of the apo-form of IsdC reveal that a 3(10) helix within the binding pocket undergoes a flexible to rigid transition as heme is captured. This structural plasticity may increase the efficiency of heme transfer across the cell wall by facilitating protein-protein interactions between apoIsdC and upstream hemoproteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581589 | PMC |
http://dx.doi.org/10.1074/jbc.M801126200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!