Donator acceptor map for carotenoids, melatonin and vitamins.

J Phys Chem A

Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Interior, S N, Ciudad Universitaria, P. O. Box 70-360, Coyoacan, 04510, Mexico.

Published: September 2008

Bright yellow and red colors in animals and plants are assumed to be caused by carotenoids (CAR). In animals, these pigments are deposited in scales, skin and feathers. Together with other naturally occurring and colorless substances such as melatonin and vitamins, they are considered antioxidants due to their free-radical-scavenging properties. However, it would be better to refer to them as "antiradicals", an action that can take place either donating or accepting electrons. In this work we present quantum chemical calculations for several CAR and some colorless antioxidants, such as melatonin and vitamins A, C and E. The antiradical capacity of these substances is determined using vertical ionization energy (I), electron affinity (A), the electrodonating power (omega(-)) and the electroaccepting power (omega(+)). Using fluor and sodium as references, electron acceptance (R(a)) and electron donation (R(d)) indexes are defined. A plot of R(d) vs R(a) provides a donator acceptor map (DAM) useful to classify any substance regarding its electron donating-accepting capability. Using this DAM, a qualitative comparison among all the studied compounds is presented. According to R(d) values, vitamin E is the most effective antiradical in terms of its electron donor capacity, while the most effective antiradical in terms of its electron acceptor capacity, R(a), is astaxanthin, the reddest CAR. These results may be helpful for understanding the role played by naturally occurring pigments, acting as radical scavengers either donating or accepting electrons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp803218eDOI Listing

Publication Analysis

Top Keywords

melatonin vitamins
12
donator acceptor
8
acceptor map
8
naturally occurring
8
donating accepting
8
accepting electrons
8
effective antiradical
8
antiradical terms
8
terms electron
8
electron
6

Similar Publications

The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has profoundly impacted global health, with pneumonia emerging as a major complication in severe cases. The pathogenesis of COVID-19 is marked by the overproduction of reactive oxygen species (ROS) and an excessive inflammatory response, resulting in oxidative stress and significant tissue damage, particularly in the respiratory system. Antioxidants have garnered considerable attention for their potential role in managing COVID-19 pneumonia by mitigating oxidative stress and modulating immune responses.

View Article and Find Full Text PDF

Nutraceuticals are not regulated by the US Food and Drug Administration, so a careful literature review is essential to make clinical decisions. Riboflavin or vitamin B2 can be recommended for migraine prevention in adults, but pediatric use is not proven. Adverse events are minimal.

View Article and Find Full Text PDF

The gut microbiota: A key player in cadmium toxicity - implications for disease, interventions, and combined toxicant exposures.

J Trace Elem Med Biol

November 2024

Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:

Cadmium (Cd) is a highly toxic heavy metal contaminant found in soil and water due to human activities such as mining and industrial discharge. Cd can accumulate in the body, leading to various health risks such as organ injuries, osteoporosis, renal dysfunction, Type 2 diabetes (T2DM), reproductive diseases, hypertension, cardiovascular diseases, and cancers. The gut is particularly sensitive to Cd toxicity as it acts as the primary barrier against orally ingested Cd.

View Article and Find Full Text PDF

Evaluating remyelination compounds for new applications in opioid use disorder management.

J Addict Dis

January 2025

Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, USA.

Opioid use disorder (OUD) is associated with a reduction in brain white matter, affecting critical areas involved in decision-making, impulse control, and reward processing. The FDA has approved several drugs and natural compounds that enhance myelination, targeting oligodendrocyte progenitor cells (OPCs), directly enhancing oligodendrocyte (OL) function, or acting as cofactors for myelin production. This retrospective case study aimed to assess whether current clinical evidence supports the use of myelin-enhancing agents to promote remission in OUD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!