Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A CHO mutant line, MAR-11, was isolated using a cytotoxic lectin, Maackia amurensis agglutinin (MAA). This mutant has decreased levels of cell surface sialic acid relative to both wild-type CHO-K1 and Lec2 mutant CHO cells. The CMP-sialic acid transporter (CMP-SAT) gene in the MAR-11 mutant cell has a C-T mutation that results in a premature stop codon. As a result, MAR-11 cells express a truncated version of CMP-SAT which contains only 100 amino acids rather than the normal CMP-SAT which contains 336 amino acids. Biochemical analyses indicate that recombinant interferon-gamma (IFN-gamma) produced by the mutant cells lack sialic acid. Using MAR-11 as host cells, an EPO/IEF assay for the structure-function study of CMP-SAT was developed. This assay seems more sensitive than previous assays that were used to analyze sialylation in Lec2 cells. Cotransfection of constructs that express CMP-SAT into MAR-11 cells completely converted the recombinant EPO to a sialylation pattern that is similar to the EPO produced by the wild-type CHO cells. Using this assay, we showed that CMP-SAT lacking C-terminal 18 amino acids from the cytosolic tail was able to allow high levels of EPO sialylation. Substitution of the Gly residues with Ile in three different transmembrane domains of CMP-SAT resulted in dramatic decreases in transporter's activity. The CMP-SAT only lost partial activity if the same Gly residues were substituted with Ala, suggesting that the lack of side chain in Gly residues in the transmembrane domains is essential for transport activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722418 | PMC |
http://dx.doi.org/10.1093/glycob/cwn080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!