Phosphorylation of the yeast nitrate transporter Ynt1 is essential for delivery to the plasma membrane during nitrogen limitation.

J Biol Chem

Departamento de Bioquímica y Biología Molecular, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Canarias 38206, Spain.

Published: November 2008

Ynt1 is the sole high affinity nitrate transporter of the yeast Hansenula polymorpha. It is highly regulated by the nitrogen source, by being down-regulated in response to glutamine by repression of the YNT1 gene and Ynt1 ubiquitinylation, endocytosis, and vacuolar degradation. On the contrary, we show that nitrogen limitation stabilizes Ynt1 levels at the plasma membrane, requiring phosphorylation of the transporter. We determined that Ser-246 in the central intracellular loop plays a key role in the phosphorylation of Ynt1 and that the nitrogen permease reactivator 1 kinase (Npr1) is necessary for Ynt1 phosphorylation. Abolition of phosphorylation led Ynt1 to the vacuole by a pep12-dependent end4-independent pathway, which is also dependent on ubiquitinylation, whereas Ynt1 protein lacking ubiquitinylation sites does not follow this pathway. We found that, under nitrogen limitation, Ynt1 phosphorylation is essential for rapid induction of nitrate assimilation genes. Our results suggest that, under nitrogen limitation, phosphorylation prevents Ynt1 delivery from the secretion route to the vacuole, which, aided by reduced ubiquitinylation, accumulates Ynt1 at the plasma membrane. This mechanism could be part of the response that allows nitrate-assimilatory organisms to cope with nitrogen depletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662184PMC
http://dx.doi.org/10.1074/jbc.M802170200DOI Listing

Publication Analysis

Top Keywords

nitrogen limitation
16
ynt1
12
plasma membrane
12
nitrate transporter
8
limitation ynt1
8
ynt1 phosphorylation
8
phosphorylation
7
nitrogen
7
phosphorylation yeast
4
yeast nitrate
4

Similar Publications

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Biomonitoring of the Paraopeba river: Cytotoxic, genotoxic and metal concentration analysis three years after the Brumadinho dam rupture - Minas Gerais, Brazil.

Sci Total Environ

January 2025

Laboratório de Análises Genéticas, Departamento de Ciências Naturais e da Terra, Universidade do Estado de Minas Gerais, Divinópolis, MG 35501-170, Brazil. Electronic address:

The rupture of Vale S.A. mining tailings dam in Brumadinho, Brazil, in January 2019 had significant environmental impacts on the Paraopeba River basin.

View Article and Find Full Text PDF

Structure and assembly mechanisms of the microbial community on an artificial reef surface, Fangchenggang, China.

Appl Microbiol Biotechnol

January 2025

Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.

The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!