Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F(1)-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1744-7909.2008.00698.xDOI Listing

Publication Analysis

Top Keywords

genetic map
8
doubled haploid
8
haploid population
8
elite chinese
8
chinese common
8
common wheat
8
map
8
chromosomal locations
8
ssr markers
8
genetic
4

Similar Publications

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Optimized circular RNA vaccines for superior cancer immunotherapy.

Theranostics

January 2025

Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Circular RNA (circRNA) has gained attention as a promising platform for mRNA vaccines due to its stability, sustained protein expression, and intrinsic immunostimulatory properties. This study aimed to design and optimize a circRNA cancer vaccine platform by screening for efficient internal ribosome entry sites (IRES) and enhancing circRNA translation efficiency for improved cancer immunotherapy. We screened 29 IRES elements to identify the most efficient one for immune cell translation, ultimately discovering the A (EV-A) IRES.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a serious complication in premature infants. This study aimed to investigate the mechanism of mitogen-activated protein 3 kinase 7 (Map3k7) affecting BPD by regulating caspase-1 mediated pyroptosis. The morphology of the lung tissue was observed using hematoxylin-eosin staining.

View Article and Find Full Text PDF

The liverwort Arnellia fennica has a circumarctic distribution with disjunct and scarce localities in the Alps, Carpathians, and Pyrenees. Within the Carpathians, it is only known from the Tatra Mountains (in Poland), where so far only four occurrences have been documented in the forest belt of the limestone part of the Western Tatras. The species is considered a tertiary relict, which owes its survival during the last glaciation period to low-lying locations in areas not covered by ice.

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!