Lopinavir impairs protein synthesis and induces eEF2 phosphorylation via the activation of AMP-activated protein kinase.

J Cell Biochem

Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, USA.

Published: October 2008

AI Article Synopsis

Article Abstract

HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574601PMC
http://dx.doi.org/10.1002/jcb.21882DOI Listing

Publication Analysis

Top Keywords

protein synthesis
16
eef2 phosphorylation
16
eef2
14
protein
8
amp-activated protein
8
protein kinase
8
increased phosphorylation
8
phosphorylation eef2
8
eef2k eef2
8
phosphorylation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!