Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The recombinant invertase INVB (re-INVB) from Zymomonas mobilis was immobilized on microbeads of Nylon-6, by means of covalent bonding. The enzyme was strongly and successfully bound to the support. The activity of the free and immobilized enzyme was determined, using 10% (w/v) sucrose, at a temperature ranging between 15 and 60 degrees C and a pH ranging between 3.5 and 7. The optimal pH and temperature for the immobilized enzyme were 5.5 and 25 degrees C, respectively. Immobilization of re-INVB on Nylon-6 showed no significant change in the optimal pH, but a difference in the optimal temperature was evident, as that for the free enzyme was shown to be 40 degrees C. The values for kinetic parameters were determined as: 984 and 98 mM for Kappm of immobilized and free re-INVB, respectively. Kappcat values for immobilized and free enzymes were 6.1x10(2) and 1.2x10(4) s(-1), respectively, and immobilized re-INVB showed Vappmax of 158.73 micromol h min(-1) mg(-1). Immobilization of re-INVB on Nylon-6 enhanced the thermostability of the enzyme by 50% at 30 degrees C and 70% at 40 degrees C, when compared to the free enzyme. The immobilization system reported here may have future biotechnological applications, owing to the simplicity of the immobilization technique, the strong binding of re-INVB to the support and the effective thermostability of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-008-0426-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!