The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma.

Pediatr Surg Int

Department of Pediatric Surgery, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.

Published: October 2008

Purpose: In normal physiology, a vacuolar-type proton pump (V-ATPase) maintains an intracellular acid microenvironment in lysosome, endosome, and other endomembrane systems. Cancer cells overexpress V-ATPase compared with normal cells, and disturbances of the acid environment are thought to significantly impact the cancer cell infiltration and growth. Bafilomycin A1 (Baf-A1) is a specific inhibitor of the proton-pump inhibitor (PPI) V-ATPase. Neoplastic cells are reportedly more sensitive to Baf-A1 than normal cells, and the difference between the susceptibility to Baf-A1 in normal cells and that in cancer cells may become a target in the cancer therapy. With this in mind, we used cells of hepatoblastoma, the cancer type accounting for 80% of all childhood liver cancers, to investigate the effects of Baf-A1 as an inducer of cancer cell apoptosis and inhibitor of cancer cell reproduction

Methods And Results: Electron microscopy showed significant morphological change of the hepatoblastoma cells of the Baf-A1-treated group compared with hepatoblastoma cells of the Baf-A1-free group. The rate of the apoptotic cell increased, and cell reproduction was inhibited. Moreover, the analysis of hepatoblastoma cells using the gene Chip gene expression analysis arrays showed that three of the 27 V-ATPase-related transcripts (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the Baf-A1-treated cells than in the Baf-A1-free cells. In normal human hepatic cells, on the other hand, the inhibition of cell growth of the Baf-A1-treated cells was negligible compared to that of the cells without Baf-A1 treatment. The result of apoptotic cell detection by morphological observations and flow cytometry revealed that Baf-A1 inhibits hepatoblastoma cellular reproduction by inducing apoptosis. On the other hand, the Baf-A1-conferred inhibition of cell growth was negligible in normal human hepatocytes

Conclusion: The V-ATPase inhibitor Baf-A1 has been proven to selectively inhibit the reproduction and induce the apoptosis of hepatoblastoma cells without adversely influencing normal hepatic cells. With these effects, V-ATPase inhibitors may hold promise as therapeutic agents for hepatoblastoma. Given that three V-ATPase-related genes (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the hepatoblastoma cells of the Baf-A1-treated group than in the Baf-A1-free cells, drug development targeting V-ATPase gene of hepatoblastomas is expected.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00383-008-2229-2DOI Listing

Publication Analysis

Top Keywords

hepatoblastoma cells
20
cells
19
cell growth
12
normal cells
12
cancer cell
12
cell
9
hepatoblastoma
9
proton pump
8
cancer cells
8
baf-a1 normal
8

Similar Publications

analysis of lncRNA-miRNA-mRNA signatures related to Sorafenib effectiveness in liver cancer cells.

World J Gastroenterol

January 2025

Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.

Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.

View Article and Find Full Text PDF

Hepatoblastoma (HBL) and fibrolamellar hepatocellular carcinoma (FLC) are the most common liver malignancies in children and young adults. FLC oncogenesis is associated with the generation of the fusion kinase, DNAJB1-PKAc (J-PKAc). J-PKAc has been found in 90% of FLC patients' tumors but not in other liver cancers.

View Article and Find Full Text PDF

Impact of endocrine disruptors on key events of hepatic steatosis in HepG2 cells.

Food Chem Toxicol

January 2025

RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic. Electronic address:

Endocrine-disrupting chemicals (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoblastoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.

View Article and Find Full Text PDF

Background/objectives: Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases.

View Article and Find Full Text PDF

Most malignant hepatocellular tumors in children are classified as either hepatoblastoma (HB) or hepatocellular carcinoma (HCC), but some tumors demonstrate features of both HB and HCC. These tumors have been recognized under a provisional diagnostic category by the World Health Organization and are distinguished from HB and HCC by a combination of histological, immunohistochemical, and molecular features. Their outcomes and cellular composition remain an open question.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!