Initial evaluation of the use of USPIO cell labeling and noninvasive MR monitoring of human tissue-engineered vascular grafts in vivo.

FASEB J

Yale University School of Medicine, Interdepartmental Program in Vascular Biology and Therapeutics, Amistad Research Bldg., 10 Amistad St., Rm. 301B, P.O. Box 208089, New Haven, CT 06520, USA.

Published: November 2008

This pilot study examines noninvasive MR monitoring of tissue-engineered vascular grafts (TEVGs) in vivo using cells labeled with iron oxide nanoparticles. Human aortic smooth muscle cells (hASMCs) were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The labeled hASMCs, along with human aortic endothelial cells, were incorporated into eight TEVGs and were then surgically implanted as aortic interposition grafts in a C.B-17 SCID/bg mouse host. USPIO-labeled hASMCs persisted in the grafts throughout a 3 wk observation period and allowed noninvasive MR imaging of the human TEVGs for real-time, serial monitoring of hASMC retention. This study demonstrates the feasibility of applying noninvasive imaging techniques for evaluation of in vivo TEVG performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574029PMC
http://dx.doi.org/10.1096/fj.08-107367DOI Listing

Publication Analysis

Top Keywords

noninvasive monitoring
8
tissue-engineered vascular
8
vascular grafts
8
iron oxide
8
human aortic
8
noninvasive imaging
8
initial evaluation
4
evaluation uspio
4
uspio cell
4
cell labeling
4

Similar Publications

Introduction And Objectives: High flow nasal cannula (HFNC) therapy is an increasingly popular mode of non-invasive respiratory support for the treatment of patients with acute hypoxemic respiratory failure (AHRF). Previous experimental studies in healthy subjects have established that HFNC generates flow-dependent positive airway pressures, but no data is available on the levels of mean airway pressure (mP) or positive end-expiratory pressure (PEEP) generated by HFNC therapy in AHRF patients. We aimed to estimate the airway pressures generated by HFNC at different flow rates in patients with AHRF, whose functional lung volume may be significantly reduced compared to healthy subjects due to alveolar consolidation and/or collapse.

View Article and Find Full Text PDF

Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Monitoring of the Local Extracellular Environment Using Chiral Gold Nanoparticles.

J Am Chem Soc

January 2025

CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.

In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!