NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

Nucleic Acids Res

Department of Biotechnology and Systems Biology, National Institute of Biology, Vecna pot 111, Ljubljana 1000, Slovenia and Eppendorf Array Technologies SA, Rue du séminaire 20, B-5000 Namur, Belgium.

Published: October 2008

We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2566881PMC
http://dx.doi.org/10.1093/nar/gkn524DOI Listing

Publication Analysis

Top Keywords

target amplification
8
amplification
6
naima
5
quantitative
5
detection
5
naima target
4
amplification strategy
4
strategy allowing
4
allowing quantitative
4
quantitative on-chip
4

Similar Publications

MuSK regulates neuromuscular junction Nav1.4 localization and excitability.

J Neurosci

January 2025

Carney Institute for Brain Science, Brown University, Providence, RI 02912

The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.

View Article and Find Full Text PDF

Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.

View Article and Find Full Text PDF

The incidence of cervical cancer continues to rise in underdeveloped regions due to low human papillomavirus (HPV) vaccination rates and inadequate screening systems. To achieve convenient, rapid, and accurate detection of HPV, we developed a three-wire lateral flow strip assay system based on dual-OR logic gates for rapid and simultaneous detection of HPV subtypes 16 and 18 in a single test. The system combines three-branch-catalytic hairpin assembly (TCHA)-mediated signal amplification with simple OR logic gate-based signal output to improve detection rates while enabling HPV 16/18 subtype identification.

View Article and Find Full Text PDF

Multiple gRNAs-assisted CRISPR/Cas12a-based portable aptasensor enabling glucometer readout for amplification-free and quantitative detection of malathion.

Anal Chim Acta

March 2025

College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, Leshan, Sichuan, 614000, PR China. Electronic address:

Background: The threat of toxic malathion residues to human health has always been a serious food safety issue. The CRISPR/Cas system represents an innovative detection technology for pesticide residues, but its application to malathion detection has not been reported yet. In addition, the multiple-guide RNA (gRNA) powered-CRISPR/Cas biosensor has the advantages of being fast, sensitive and does not require pre-amplification.

View Article and Find Full Text PDF

Sensitive fluorescent detection of SARS-CoV-2 RNA using an enzymatic-based method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

CICS-UBI - Health Sciences Research Centre University of Beira Interior Covilhã Portugal; RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama 6201-001 Covilhã, Portugal. Electronic address:

Rapid, quantitative, and sensitive detection of viral oligonucleotides can help to diagnose the infection before symptoms occur, monitor disease progression, and identify viral subtypes. A one-pot, simple, rapid hairpin-mediated nicking enzymatic signal amplification (HNESA) method was previously developed for nucleic acids detection. In the present work, this method was applied for the detection of SARS-CoV-2 RNA by designing an assistant probe (AP) that contains the complementary sequence for the target, the sequence of hybridization with the loop region of the molecular beacon (MB), and the recognition site of the nicking endonuclease Nt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!